
Building fast Bayesian computing machines out of inten-
tionally stochastic, digital parts.

Vikash Mansinghka1,2,3 and Eric Jonas1,3

1The authors contributed equally to this work.

2Computer Science & Artificial Intelligence Laboratory, MIT

3Department of Brain & Cognitive Sciences, MIT

The brain interprets ambiguous sensory information faster and more reliably than modern

computers, using neurons that are slower and less reliable than logic gates. But Bayesian in-

ference, which underpins many computational models of perception and cognition, appears

computationally challenging even given modern transistor speeds and energy budgets. The

computational principles and structures needed to narrow this gap are unknown. Here we

show how to build fast Bayesian computing machines using intentionally stochastic, digi-

tal parts, narrowing this efficiency gap by multiple orders of magnitude. We find that by

connecting stochastic digital components according to simple mathematical rules, one can

build massively parallel, low precision circuits that solve Bayesian inference problems and

are compatible with the Poisson firing statistics of cortical neurons. We evaluate circuits for

depth and motion perception, perceptual learning and causal reasoning, each performing

inference over 10,000+ latent variables in real time — a 1,000x speed advantage over com-

modity microprocessors. These results suggest a new role for randomness in the engineering

and reverse-engineering of intelligent computation.

1

ar
X

iv
:1

40
2.

49
14

v1
 [

cs
.A

I]
 2

0
Fe

b
20

14

Our ability to see, think and act all depend on our mind’s ability to process uncertain infor-

mation and identify probable explanations for inherently ambiguous data. Many computational

models of the perception of motion1, motor learning2, higher-level cognition3, 4 and cognitive

development5 are based on Bayesian inference in rich, flexible probabilistic models of the world.

Machine intelligence systems, including Watson6, autonomous vehicles7 and other robots8 and the

Kinect9 system for gestural control of video games, also all depend on probabilistic inference to

resolve ambiguities in their sensory input. But brains solve these problems with greater speed than

modern computers, using information processing units that are orders of magnitude slower and less

reliable than the switching elements in the earliest electronic computers. The original UNIVAC I

ran at 2.25 MHz10, and RAM from twenty years ago had one bit error per 256 MB per month11. In

contrast, the fastest neurons in human brains operate at less than 1 kHz, and synaptic transmission

can completely fail up to 50% of the time12.

This efficiency gap presents a fundamental challenge for computer science. How is it possi-

ble to solve problems of probabilistic inference with an efficiency that begins to approach that of

the brain? Here we introduce intentionally stochastic but still digital circuit elements, along with

composition laws and design rules, that together narrow the efficiency gap by multiple orders of

magnitude.

Our approach both builds on and departs from the principles behind digital logic. Like tradi-

tional digital gates, stochastic digital gates consume and produce discrete symbols, which can be

represented via binary numbers. Also like digital logic gates, our circuit elements can be composed

2

and abstracted via simple mathematical rules, yielding larger computational units that whose be-

havior can be analyzed in terms of their constituents. We describe primitives and design rules for

both stateless and synchronously clocked circuits. But unlike digital gates and circuits, our gates

and circuits are intentionally stochastic: each output is a sample from a probability distribution

conditioned on the inputs, and (except in degenerate cases) simulating a circuit twice will pro-

duce different results. The numerical probability distributions themselves are implicit, though they

can be estimated via the circuits’ long-run time-averaged behavior. And also unlike digital gates

and circuits, Bayesian reasoning arises naturally via the dynamics of our synchronously clocked

circuits, simply by fixing the values of the circuit elements representing the data.

We have built prototype circuits that solve problems of depth and motion perception and

perceptual learning, plus a compiler that can automatically generate circuits for solving causal

reasoning problems given a description of the underlying causal model. Each of these systems il-

lustrates the use of stochastic digital circuits to accelerate Bayesian inference an important class of

probabilistic models, including Markov Random Fields, nonparametric Bayesian mixture models,

and Bayesian networks. Our prototypes show that this combination of simple choices at the hard-

ware level — a discrete, digital representation for information, coupled with intentionally stochas-

tic rather than ideally deterministic elements — has far reaching architectural consequences. For

example, software implementations of approximate Bayesian reasoning typically rely on high-

precision arithmetic and serial computation. We show that our synchronous stochastic circuits can

be implemented at very low bit precision, incurring only a negligible decrease in accuracy. This

low precision enables us to make fast, small, power-efficient circuits at the core of our designs.

3

We also show that these reductions in computing unit size are sufficient to let us exploit the mas-

sive parallelism that has always been inherent in complex probabilistic models at a granularity

that has been previously impossible to exploit. The resulting high computation density drives the

performance gains we see from stochastic digital circuits, narrowing the efficiency gap with neural

computation by multiple orders of magnitude.

Our approach is fundamentally different from existing approaches for reliable computation

with unreliable components13–15, which view randomness as either a source of error whose impact

needs to be mitigated or as a mechanism for approximating arithmetic calculations. Our combi-

national circuits are intentionally stochastic, and we depend on them to produce exact samples

from the probability distributions they represent. Our approach is also different from and com-

plementary to classic analog16 and modern mixed-signal17 neuromorphic computing approaches:

stochastic digital primitives and architectures could potentially be implemented using neuromor-

phic techniques, providing a means of applying these designs to problems of Bayesian inference.

In theory, stochastic digital circuits could be used to solve any computable Bayesian in-

ference problem with a computable likelihood18 by implementing a Markov chain for inference

in a Turing-complete probabilistic programming language19, 20. Stochastic ciruits can thus imple-

ment inference and learning techniques for diverse intelligent computing architectures, including

both probabilistic models defined over structured, symbolic representations5 as well as sparse, dis-

tributed, connectionist representations21. In contrast, hardware accelerators for belief propagation

algorithms22–24 can only answer queries about marginal probabilities or most probable configura-

4

tions, only apply to finite graphical models with discrete or binary nodes, and cannot be used to

learn model parameters from data. For example, the formulation of perceptual learning we present

here is based on inference in a nonparametric Bayesian model to which belief propagation does

not apply. Additionally, because stochastic digital circuits produce samples rather than probabili-

ties, their results capture the complex dependencies between variables in multi-modal probability

distributions, and can also be used to solve otherwise intractable problems in decision theory by

estimating expected utilities.

Stochastic Digital Gates and Stateless Stochastic Circuits

Digital logic circuits are based on a gate abstraction defined by Boolean functions: deter-

ministic mappings from input bit values to output bit values25. For elementary gates, such as the

AND gate, these are given by truth tables; see Figure 1A. Their power and flexibility comes in

part from the composition laws that they support, shown in Figure 1B. The output from one gate

can be connected to the input of another, yielding a circuit that samples from the composition of

the Boolean functions represented by each gate. The compound circuit can also be treated as a

new primitive, abstracting away its internal structure. These simple laws have proved surprisingly

powerful: they enable complex circuits to be built up out of reusable pieces.

Stochastic digital gates (see Figure 1C) are similar to Boolean gates, but consume a source

of random bits to generate samples from conditional probability distributions. Stochastic gates are

5

Figure 1. (A) Boolean gates, such as the AND gate, are mathematically specified by truth tables: determin-

istic mappings from binary inputs to binary outputs. (B) Compound Boolean circuits can be synthesized out

of sub-circuits that each calculate different sub-functions, and treated as a single gate that implements the

composite function, without reference to its internal details. (C) Each stochastic gate samples from a dis-

crete probability distribution conditioned on an input; for clarity, we show an external source of random bits

driving the stochastic behavior. (D) Composing gates that sample B given A and C given B yields a network

that samples from the joint distribution over B and C given A; abstraction yields a gate that samples from the

marginal distribution C—A. When only one sample path has nonzero probability, this recovers the composi-

tion of Boolean functions. (E) The THETA gate is a stochastic gate that generates samples from a Bernoulli

distribution whose parameter theta is specified via the m input b its. Like all stochastic digital gates, it can

be specified by a conditional probability table, analogously to how Boolean gates can be specified via a truth

table. (F) When each new output sample is triggered (e.g. because its internal randomness source updates),

a different output sample is generated; time-averaging the output makes it possible to estimate the entries in

the probability table, which are otherwise implicit. (G) The THETA gate can be implemented by comparing

the output of a source of (pseudo)random bits to the input coin weight. (H) Deterministic gates, such as

the AND gate shown here, can be viewed as degenerate stochastic gates specified by conditional probability

tables whose entries are either 0 or 1. This permits fluid interoperation of deterministic and stochastic gates

in compound circuits. (I) A parallel circuit implementing a Binomial random variable can be implemented

by combining THETA gates and adders using the composition laws from (D).

6

K. Jarboe
Sticky Note
Accepted set by K. Jarboe

p(OUT|IN)IN OUT
m n

OUT ~ P(OUT | IN)

f g

f g g o f
f

f g h = g o fh

IN OUT
m

IN OUT

0000

0001

1111

0
1
0
1

0
1

P
1
0

15/16
1/16

1/16
15/16

(P)RNG

IN encodes P(OUT = 1)

IN OUT

OUT = R < IN

p(B|A)A B p(C|B)B C

p(B|A)A B p(C|B)B C p(B, C |A)

p(B|A)A B p(C|B)B C
p(C |A)p(C |A)

Sample
IN[0]
IN[1]
IN[2]
IN[3]

OUT
0100000100010110011101

0 1 0 1

a

fIN OUT
m n

Y
A

B

Y = A^B

A B Y
0
0
1
1

0
1
0
1

0
0
0
1

b

c

d

e

f

g

h

i

fIN OUT
m n

Y
A

B

Y = A^B

A B Y
0
0
1
1

0
1
0
1

0
0
0
1

p(OUT|IN)IN OUT
m n

P = P(Y | A, B)

A B Y
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

RAND

h

P
1
0
1
0
1
0
0
1

7

specified by conditional probability tables; these give the probability that a given output will result

from a given input. Digital logic corresponds to the degenerate case where all the probabilities are

0 or 1; see Figure 1D for the conditional probability table for an AND gate. Many stochastic gates

with m input bits and n output bits are possible. Figure 1E shows one central example, the THETA

gate, which generates draws from a biased coin whose bias is specified on the input. Supplementary

material outlining serial and parallel implementations is available at 26. Crucially, stochastic gates

support generalizations of the composition laws from digital logic, shown in Figure 1F. The output

of one stochastic gate can be fed as the input to another, yielding samples from the joint probability

distribution over the random variables simulated by each gate. The compound circuit can also be

treated as a new primitive that generates samples from the marginal distribution of the final output

given the first input. As with digital gates, an enormous variety of circuits can be constructed using

these simple rules.

Fast Bayesian Inference via Massively Parallel Stochastic Transition Circuits

Most digital systems are based on deterministic finite state machines; the template for these ma-

chines is shown in Figure 2A. A stateless digital circuit encodes the transition function that cal-

culates the next state from the previous state, and the clocking machinery (not shown) iterates the

transition function repeatedly. This abstraction has proved enormously fruitful; the first micro-

processors had roughly 220 distinct states. In Figure 2B, we show the stochastic analogue of this

synchronous state machine: a stochastic transition circuit.

8

Instead of the combinational logic circuit implementing a deterministic transition function,

it contains a combinational stochastic circuit implementing a stochastic transition operator that

samples the next state from a probability distribution that depends on the current state. It thus

corresponds to a Markov chain in hardware. To be a valid transition circuit, this transition operator

must have a unique stationary distribution P (S|X) to which it ergodically converges. A num-

ber of recipes for suitable transition operators can be constructed, such as Metropolis sampling

27 and Gibbs sampling28; most of the results we present rely on variations on Gibbs sampling.

More details on efficient implementations of stochastic transition circuits for Gibbs sampling and

Metropolis-Hastings can be found elsewhere 26. Note that if the input X represents observed data

and the state S represents a hypothesis, then the transition circuit implements Bayesian inference.

We can scale up to challenging problems by exploiting the composition laws that stochas-

tic transition circuits support. Consider a probability distribution defined o ver t hree variables

P (A, B, C) = P (A)P (B|A)P (C|A). We can construct a transition circuit that samples from

the overall state (A, B, C) by composing transition circuits for updating A|BC, B|A and C|A;

this assembly is shown in Figure 2C. As long as the underlying probability model does not have

any zero-probability states, ergodic convergence of each constituent transition circuit then implies

ergodic convergence of the whole assembly29. The only requirement for scheduling transitions is

that each circuit must be left fixed while circuits for variables that interact with i t are transition-

ing. This scheduling requirement — that a transition circuit’s value be held fixed while others that

read from its internal state or serve as inputs to its next transition are updating — is analogous

to the so-called “dynamic discipline” that defines valid clock schedules for traditional sequential

9

logic30. Deterministic and stochastic schedules, implementing cycle or mixture hybrid kernels29,

are both possible. This simple rule also implies a tremendous amount of exploitable parallelism in

stochastic transition circuits: if two variables are independently caused given the current setting of

all others, they can be updated at the same time.

Assemblies of stochastic transition circuits implement Bayesian reasoning in a straightfor-

ward way: by fixing, or “clamping” some of the variables in the assembly. If no variables are

fixed, the circuit explores the full joint distribution, as shown in Figure 2E and 2F. If a variable

is fixed, the circuit explores the conditional distribution on the remaining variables, as shown in

Figure 2G and 2H. Simply by changing which transition circuits are updated, the circuit can be

used to answer different probabilistic queries; these can be varied online based on the needs of the

application.

The accuracy of ultra-low-precision stochastic transition circuits.

The central operation in many Markov chain techniques for inference is called DISCRETE-SAMPLE,

which generates draws from a discrete-output probability distribution whose weights are specified

on its input. For example, in Gibbs sampling, this distribution is the conditional probability of one

variable given the current value of all other variables that directly depend on it. One implementa-

tion of this operation is shown in Figure 3A; each stochastic transition circuit from Figure 2 could

be implemented by one such circuit, with multiplexers to select log-probability values based on

10

Figure 2. Stochastic transition circuits and massively parallel Bayesian inference. (A) A deterministic

finite s tate machine consists of a register and a t ransition function implemented via combinational logic.

(B) A stochastic transition circuit consists of a register and a stochastic transition operator implemented

by a combinational stochastic circuit. Each stochastic transition circuit is TS|X is parameterized by some

input X , and its internal combinational stochastic block P (St+1|St, X) must ergodically converge to a

unique stationary distribution P (S|X) for all X . (C) Stochastic transition circuits can be composed to

construct samplers for probabilistic models over multiple variables by wiring together stochastic transition

circuits for each variable based on their interactions. This circuit samples from a distribution P (A, B, C) =

P (A)P (B|A)P (C|A). (D) Each network of stochastic transition circuits can be scheduled in many ways;

here we show one serial schedule and one parallel schedule for the transition circuit from (C). Convergence

depends only on respecting the invariant that no stochastic transition circuit transitions while other circuits

that interact with it are transitioning. (E) The Markov chain implemented by this transition circuit. (F)

Typical stochastic evolutions of the state in this circuit. (G) Inference can be implemented by clamping

state variables to specific v alues; t his y ields a r estricted M arkov c hain t hat c onverges t o t he conditional

distribution over the unclamped variables given the clamped ones. Here we show the chain obtained by

fixing C = 1 . (H) Typical stochastic evolutions of the state in this clamped t ransition c ircuit. Changing

which variables are fixed allows the inference problem to be changed dynamically as the circuit is running.

11

CLK

D Q

X
S|X

St+1 ~ P(St+1|St, X)

X
St+1

St

TS|X

fA

A

B C

fACfAB

TA|BC TC|A

TB|A

(1, 0, 0) 0.12

(1, 0, 1)

0.29

(1, 1, 0)

0.29

(0, 0, 0)

0.29

0.04

0.63

(1, 1, 1)

0.29

(0, 0, 1)

0.04

0.04

0.63

0.29

(0, 1, 0)

0.04

0.04

0.04

0.92

0.04

0.88

0.04

0.04

0.29

0.29

0.37

(0, 1, 1)

0.04

0.29

0.29

0.37

0.04

0.33

0.29

0.29

0.08

(0, 0, 1) 0.53

(0, 1, 1)

0.06

(1, 0, 1)

0.42

0.42

0.11

(1, 1, 1)

0.47 0.04

0.65

0.310.04

0.96

A) B) C) D)

E) F) G)

H)

Tuesday, April 9, 13

CLK

D Q

X
S|X

St+1 ~ P(St+1|St, X)

X
St+1

St

TS|X

fA

A

B C

fACfAB

TA|BC TC|A

TB|A

(1, 0, 0) 0.12

(1, 0, 1)

0.29

(1, 1, 0)

0.29

(0, 0, 0)

0.29

0.04

0.63

(1, 1, 1)

0.29

(0, 0, 1)

0.04

0.04

0.63

0.29

(0, 1, 0)

0.04

0.04

0.04

0.92

0.04

0.88

0.04

0.04

0.29

0.29

0.37

(0, 1, 1)

0.04

0.29

0.29

0.37

0.04

0.33

0.29

0.29

0.08

(0, 0, 1) 0.53

(0, 1, 1)

0.06

(1, 0, 1)

0.42

0.42

0.11

(1, 1, 1)

0.47 0.04

0.65

0.310.04

0.96

A) B) C) D)

E) F) G)

H)

Tuesday, April 9, 13

IN OUT
m m

D Q
St+1 StCombinational

State Transition
Lookup Table

CLK

D Q

X
S|X

St+1 ~ P(St+1|St, X)

X
St+1

St

TS|X

fA

A

B C

fACfAB

TA|BC TC|A

TB|A

(1, 0, 0) 0.12

(1, 0, 1)

0.29

(1, 1, 0)

0.29

(0, 0, 0)

0.29

0.04

0.63

(1, 1, 1)

0.29

(0, 0, 1)

0.04

0.04

0.63

0.29

(0, 1, 0)

0.04

0.04

0.04

0.92

0.04

0.88

0.04

0.04

0.29

0.29

0.37

(0, 1, 1)

0.04

0.29

0.29

0.37

0.04

0.33

0.29

0.29

0.08

(0, 0, 1) 0.53

(0, 1, 1)

0.06

(1, 0, 1)

0.42

0.42

0.11

(1, 1, 1)

0.47 0.04

0.65

0.310.04

0.96

A) B) C) D)

E) F) G)

H)

Tuesday, April 9, 13

CLK

D Q

X
S|X

St+1 ~ P(St+1|St, X)

X
St+1

St

TS|X

fA

A

B C

fACfAB

TA|BC TC|A

TB|A

(1, 0, 0) 0.12

(1, 0, 1)

0.29

(1, 1, 0)

0.29

(0, 0, 0)

0.29

0.04

0.63

(1, 1, 1)

0.29

(0, 0, 1)

0.04

0.04

0.63

0.29

(0, 1, 0)

0.04

0.04

0.04

0.92

0.04

0.88

0.04

0.04

0.29

0.29

0.37

(0, 1, 1)

0.04

0.29

0.29

0.37

0.04

0.33

0.29

0.29

0.08

(0, 0, 1) 0.53

(0, 1, 1)

0.06

(1, 0, 1)

0.42

0.42

0.11

(1, 1, 1)

0.47 0.04

0.65

0.310.04

0.96

A) B) C) D)

E) F) G)

H)

Tuesday, April 9, 13

TA|B,C TC|A

TB|C

A C

B

D QSt+1 S|X

St+1~P(St+1 | St,X)

St

X

TS|X

X

SAMPLE

B~ A~ C~

t=0

t=1

t=2

t=3

B~ A~ C~

t=0

t=1

t=2

t=3

a
b

c d

e

f

g
h

12

the neighbors of each random variable. Because only the ratios of the raw probabilities matter, and

the probabilities themselves naturally vary on a log scale, extremely low precision representations

can still provide accurate results. High entropy (i.e. nearly uniform) distributions are resilient

to truncation because their values are nearly equal to begin with, differing only slightly in terms

of their low-order bits. Low entropy (i.e. nearly deterministic) distributions are resilient because

truncation is unlikely to change which outcomes have nonzero probability. Figure 3B quanti-

fies t his l ow-precision p roperty, showing t he r elative entropy (a canonical i nformation theoretic

measure of the difference between two distributions) between the output distributions of low preci-

sion implementations of the circuit from Figure 3A and an accurate floating-point implementation.

Discrete distributions on 1000 outcomes were used, spanning the full range of possible entropies,

from almost 10 bits (for a uniform distribution on 1000 outcomes) to 0 bits (for a deterministic

distribution), with error nearly undetectable until fewer than 8 bits are used. Figure 3C shows

example distributions on 10 outcomes, and Figure 3D shows the resulting impact on computing

element size. Extensive quantitative assessments of the impact of low bit precision have also been

performed, providing additional evidence that only very low precision is required 26.

Efficiency gains on depth and motion perception and perceptual learning problems

Our main results are based on an implementation where each stochastic gate is simulated using

digital logic, consuming entropy from an internal pseudorandom number generator31. This allows

13

Figure 3. (A) The discrete-sample gate is a central building block for stochastic transition circuits, used

to implement Gibbs transition operators that update a variable by sampling from its conditional distribution

given the variables it interacts with. The gate renormalizes the input log probabilities it is given, converts

them to probabilities (by exponentiation), and then samples from the resulting distribution. Input energies

are specified via a custom fixed-point coding scheme. (B) Discrete-sample gates remain accurate even when

implemented at extremely low bit-precision. Here we show the relative entropy between true distributions

and their low-precision implementations, for millions of distributions over discrete sets with 1000 elements;

accuracy loss is negligible even when only 8 bits of precision are used. (C) The accuracy of low-precision

discrete-sample gates can be understood by considering multinomial distributions with high, medium and

low entropy. High entropy distributions involve outcomes with very similar probability, insensitive to ratios,

while low entropy distributions are dominated by the location of the most probable outcome. (D) Low-

precision transition circuits save area as compared to high-precision floating point a lternatives; these area

savings make it possible to economically exploit massive parallelism, by fitting many sampling units on a

single chip.

14

b
c

4.
2

4.
3

5.
2

5.
3

5.
4

6.
2

6.
3

6.
4

6.
5

7.
2

7.
3

7.
4

7.
5

8.
2

8.
3

8.
4

pr
ob

pr
ob

pr
ob

a

d

0 1 0 1 1 0 0 1
m bits n bits

= 11.125
1 0 1 1 1 001 = -7.5

e1

eK

ENERGY-IN1

ENERGY-INK

SAMPLE

OUT

P (out = i |{ ei })

=
exp(ei)
K exp(ek)

m.n

m.n

log K

f

15

us to measure the performance and fault-tolerance improvements that flow from stochastic archi-

tectures, independent of physical implementation. We find that stochastic circuits make it practical

to perform stochastic inference over several probabilistic models with 10,000+ latent variables in

real time and at low power on a single chip. These designs achieve a 1,000x speed advantage over

commodity microprocessors, despite using gates that are 10x slower. In 26, we also show architec-

tures that exhibit minimal degradation of accuracy in the presence of fault rates as high as one bit

error for every 100 state transitions, in contrast to conventional architectures where failure rates

are measured in bit errors (failures) per billion hours of operation32.

Our first a pplication i s t o d epth a nd m otion p erception, v ia B ayesian i nference i n lattice

Markov Random Field models28. The core problem is matching pixels from two images of the

same scene, taken at distinct but nearby points in space or in time. The matching is ambiguous

on the basis of the images alone, as multiple pixels might share the same value33; prior knowl-

edge about the structure of the scene must be applied, which is often cast in terms of Bayesian

inference34. Figure 4A illustrates the template probabilistic model most commonly used. The X

variables contain the unknown displacement vectors. Each Y variable contains a vector of pixel

similarity measurements, one per possible pair of matched pixels based on X. The pairwise poten-

tials between the X variables encode scene structure assumptions; in typical problems, unknown

values are assumed to vary smoothly across the scene, with a small number of discontinuities at the

boundaries of objects. Figure 4B shows the conditional independence structure in this problem:

every other X variable is independent from one another, allowing the entire Markov chain over

the X variables to be updated in a two-phase clock, independent of lattice size. Figure 4C shows

16

Figure 4. (A) A Markov Random Field for solving depth and motion perception, as well as other dense

matching problems. Each Xi,j node stores the hidden quantity to be estimated, e.g. the disparity of a

pixel. Each fLP ensures adjacent Xs are either similar or very different, i.e. that depth and motion fields

vary smoothly on objects but can contain discontinuities at object boundaries. Each Yi,j node stores a per-

latent-pixel vector of similarity information for a range of candidate matches, linked to the Xs by the fE

potentials. (B) The conditional independencies in this model permit many different parallelization strategies,

from fully space-parallel implementations to virtualized implementations where blocks of pixels are updated

in parallel. (C) Depth perception results. The left input image, plus the depth maps obtained by software

(middle) and hardware (right) engines for solving the Markov Random Field. (D) Motion perception results.

One input frame, plus the motion flow vector fields for software (middle) and hardware (right) solutions. (E)

Energy versus time for software and hardware solutions to depth perception, including both 8-bit and 12-bit

hardware. Note that the hardware is roughly 500x faster than the software on this frame. (F) Energy versus

time for software and hardware solutions to motion perception.

17

en
er

gy
en

er
gy

energy vs time for stereo vision

en
er

gy
en

er
gy

energy vs time for optical �ow

a. b.




 


c.

d.

e. f.









 





 











 



input image software hardware (low-precision)

input image software hardware (low-precision)

18

the dataflow for the software-reprogrammable probabilistic video processor we developed to solve

this family of problems; this processor takes a problem specification based on pairwise potentials

and Y values, and produces a stream of posterior samples. When comparing the hardware to hand-

optimized C versions on a commodity workstation, we see a 500x performance improvement.

We have also built stochastic architectures for solving perceptual learning problems, based on

fully Bayesian inference in Dirichlet process mixture models35, 36. Dirichlet process mixtures allow

the number of clusters in a perceptual dataset to be automatically discovered during inference,

without assuming an a priori limit on the models’ complexity, and form the basis of many models of

human categorization37, 38. We tested our prototype on the problem of discovering and classifying

handwritten digits from binary input images. Our circuit for solving this problem operates on an

online data stream, and efficiently t racks the number of perceptual clusters this i nput; see 2 6 for

architectural and implementation details and additional characterizations of performance. As with

our depth and motion perception architecture, we observe over ∼2,000x speedups as compared to

a highly optimized software implementation. Of the ∼2000x difference in speed, roughly ∼256x

is directly due to parallelism — all of the pixels are independent dimensions, and can therefore be

updated simultaneously.

19

Figure 5. (A) Example samples from the posterior distribution of cluster assignments for a nonparametric

mixture model. The two samples show posterior variance, reflecting the uncertainty between three and four

source clusters. (B) Typical handwritten digit images from the MNIST corpus52, showing a high degree

of variation across digits of the same type. (C) The digit clusters discovered automatically by a stochastic

digital circuit for inference in Dirichlet process mixture models. Each image represents a cluster; each pixel

represents the probability that the corresponding image pixel is black. Clusters are sorted according to the

most probable true digit label of the images in the cluster. Note that these cluster labels were not provided

to the circuit. Both the clusters and the number of clusters were discovered automatically by the circuit over

the course of inference. (D) The receiver operating characteristic (ROC) curves that result from classifying

digits using the learned clusters; quantitative results are competitive with state-of-the-art classifiers. (E) The

time required for one cycle through the outermost transition circuit in hardware, versus the corresponding

time for one sweep of a highly optimized software implementation of the same sampler, which is ∼2000x

slower.

20

a.

d.

b.

e.

x0

x1
sample 1

sample 2

0 1 2 new
cluster

0 1 2 new
cluster

3

data {xi}

P(next cluster | {xi})

cluster ID

c.

21

Automatically generated causal reasoning circuits and spiking implementations

Digital logic gates and their associated design rules are so simple that circuits for many problems

can be generated automatically. Digital logic also provides a common target for device engineers,

and have been implemented using many different physical mechanisms – classically with vaccum

tubes, then with MOSFETS in silicon, and even on spintronic devices39. Here we provide two

illustrations of the analogous simplicity and generality of stochastic digital circuits, both relevant

for the reverse-engineering of intelligent computation in the brain.

We have built a compiler that can automatically generate circuits for solving arbitrary causal

reasoning problems in Bayesian network models. Bayesian network formulations of causal rea-

soning have played central roles in machine intelligence22 and computational models of cognition

in both humans and rodents4. Figure A shows a Bayesian network for diagnosing the behavior

of an intensive care unit monitoring system. Bayesian inference within this network can be used

to infer probable states of the ICU given ambiguous patterns of evidence — that is, reason from

observed effects back to their probable causes. Figure B shows a factor graph representation of

this model40; this more general data structure is used as the input to our compiler. Figure C shows

inference results from three representative queries, each corresponding to a different pattern of

observed data.

We have also explored implementations of stochastic transition circuits in terms of spiking

elements governed by Poisson firing statistics. Figure D shows a spiking network that implements

the Markov chain from Figure . The stochastic transition circuit corresopnding to a latent variable

22

X is implemented via a bank of Poisson-spiking elements {Xi} with one unit Xi per possible value

of the variable. The rate for each spiking element Xi is determined by the unnormalized condi-

tional log probability of the variable setting it corresponds to, following the discrete-sample gate

from Figure the time to first spike t(Xi) ∼ Exp(ei), with e i obtained by summing energy contri-

butions from all connected variables. The output value of X is determined by argmini{t(Xi)}, i.e.

the element that spiked first, implemented by fast lateral inhibition between the X is. It is easy to

show that this implements exponentiation and normalization of the energies, leading to a correct

implementation of a stochastic transition circuit for Gibbs sampling; see 26 for more information.

Elements are clocked quasi-synchronously, reflecting the conditional independence structure and

parallel update scheme from Figure D, and yields samples from the correct equilibrium distribu-

tion.

This spiking implementation helps to narrow the gap with recent theories in computational

neuroscience. For example, there have been recent proposals that neural spikes correspond to

samples41, and that some spontaneous spiking activity corresponds to sampling from the brain’s

unclamped prior distribution42. Combining these local elements using our composition and ab-

straction laws into massively parallel, low-precision, intentionally stochastic circuits may help to

bridge the gap between probabilistic theories of neural computation and the computational de-

mands of complex probabilistic models and approximate inference43.

23

Figure 6. (A) A Bayesian network model for ICU alarm monitoring, showing measurable variables, hidden

variables, and diagnostic variables of interest. (B) A factor graph representation of this Bayesian network,

rendered by the input stage for our stochastic transition circuit synthesis software. (C) A representation of the

factor graph showing evidence variables as well as a parallel schedule for the transition circuits automatically

extracted by our compiler: all nodes of the same color can be transitioned simultaneously. (D) Three

diagnosis results from Bayesian inference in the alarm network, showing high accuracy diagnoses (with

some posterior uncertainty) from an automatically generated circuit. E) The schematic of a spiking neural

implementation of a stochastic transition circuit assembly for sampling from the three-variable probabilistic

model from Figure 2. (F) The spike raster (black) and state sequence (blue) that result from simulating

the circuit. (G) The spiking simulation yields state distributions that agree with exact simulation of the

underlying Markov chain.

24






 




 

 
 

 









 








 










 

































High: HRBP, HREKG, VCP,
 HRSAT, PCWP
Low: SAO2, PRESS, BP
Zero: EXPCO2, MINVOL

High: PRESS
Low: MINVOL

Symptoms: Everything Normal

P(Cause):

PAP

VentLung

Disconnect

HR

MinVol

ErrLowOutput

FiO2

LVFailure

CVP

LVEDVolume

KinkedTube

Intubation

BP

ExpCO2

MinVolSet

SaO2

VentTube

ArtCO2

StrokeVolume

PVSat

Press

HRBP

Catechol

VentMach

VentAlv

CO

Shunt

HREKG

Hypovolemia

HRSat

InsuffAnesth

TPR

ErrCauter

HistoryAnaphylaxis

PulmEmbolus

PCWP

Parallel Stages
of Inference

Conditioning
Variables (�xed)

a.

b.
c.

e.

f. h.

d.

A=0

A=1

B=0

B=1

C=0

C=1

Wednesday, September 25, 13

transform
ation

parallelization

in
fe

re
nc

e

25

Discussion

To further narrow the efficiency gap with the b rain, and scale to more challenging Bayesian in-

ference problems, we need to improve the convergence rate of our architectures. One approach

would be to initialize the state in a transition circuit via a separate, feed-forward, combinational

circuit that approximates the equilibrium distribution of the Markov chain. Machine perception

software that uses machine learning to construct fast, compact initializers is already in use9. An-

alyzing the number of transitions needed to close the gap between a good initialization and the

target distribution may be harder44. However, some feedforward Monte Carlo inference strategies

for Bayesian networks provably yield precise estimates of probabilities in polynomial time if the

underlying probability model is sufficiently stochastic45; it remains to be seen if similar conditions

apply to stateful stochastic transition circuits.

It may also be fruitful to search for novel electronic devices — or previously unusable

dynamical regimes of existing devices — that are as well matched to the needs of intentionally

stochastic circuits as transistors are to logical inverters, potentially even via a spiking implemen-

tation. Physical phenomena that proved too unreliable for implementing Boolean logic gates may

be viable building blocks for machines that perform Bayesian inference.

Computer engineering has thus far focused on deterministic mechanisms of remarkable scale

and complexity: billlions of parts that are expected to make trillions of state transitions with per-

fect repeatability46. But we are now engineering computing systems to exhibit more intelligence

than they once did, and identify probable explanations for noisy, ambiguous data, drawn from large

26

spaces of possibilities, rather than calculate the definite consequences of perfectly known assump-

tions with high precision. The apparent intractability of probabilistic inference has complicated

these efforts, and challenged the viability of Bayesian reasoning as a foundation for engineering

intelligent computation and for reverse-engineering the mind and brain.

At the same time, maintaining the illusion of rock-solid determinism has become increas-

ingly costly. Engineers now attempt to build digital logic circuits in the deep sub-micron regime47

and even inside cells48; in both these settings, the underlying physics has stochasticity that is

difficult t o s uppress. E nergy budgets h ave g rown i ncreasingly r estricted, f rom t he s cale o f the

datacenter49 to the mobile device50, yet we spend substantial energy to operate transistors in de-

terministic regimes. And efforts to understand the dynamics of biological computation — from

biological neural networks to gene expression networks51 — have all encountered stochastic be-

havior that is hard to explain in deterministic, digital terms. Our intentionally stochastic digital

circuit elements and stochastic computing architectures suggest a new direction for reconciling

these trends, and enables the design of a new class of fast, Bayesian digital computing machines.

Acknowledgements The authors would like to acknowledge Tomaso Poggio, Thomas Knight, Gerald

Sussman, Rakesh Kumar and Joshua Tenenbaum for numerous helpful discussions and comments on early

drafts, and Tejas Kulkarni for contributions to the spiking implementation.

27

Supplemental Material for Building fast, Bayesian computing

machines out of intentionally stochastic, digital parts.

Vikash K. Mansinghka* and Eric Jonas*

This technical note provides the following supplementary material:

1. Additional illustrations of combinational stochastic circuits.

2. Additional examples of stochastic transition circuits, elaborating on the connection with the building
blocks of Markov chain Monte Carlo algorithms.

3. Additional empirical data that bears on the claim that extremely low bit precision (and therefore
low circuit area and high computation density) is achievable with minimal reduction in accuracy.

4. Implementation details for our depth, motion perception, and perceptual learning circuits, as well
as our compiler.

5. Mathematical background relevant for the Poisson-spiking implementation of stochastic digital cir-
cuits.

Readers familiar with digital design and computer architecture and unfamiliar with Bayesian inference
may find the first two sections a helpful bridge between the main paper and the literature on algorithms
for posterior simulation. Readers familiar with probabilistic modeling and approximate inference may
find the experiments on low precision requirements and the detailed empirical results most useful.

1

Binomial sampling circuits.

ϴ
R

IN OUT

ϴ
R

IN OUT

n=0

n=N-1

+P Y

(a) Fully-parallel

ϴ
R

IN OUT

DQ

P Y

(b) Serial

Figure 1: Two implementations of a binomial sampling circuit: a faster fully space-parallel design and
a slower more area-efficient bit-serial one. Both produce samples from a binomial distribution with N
possible output values and a weight of p.

Conditional independence gives the designer tremendous flexibility in making trade-offs between sil-
icon area and the time required to produce a sample. Consider a Bernoulli distribution (figure 1), the
distribution on the number of heads h from flipping N biased coins with weight p. Because the coins flips
are independent, we can flip them simultaneously (via theta gates) and sum the result. Alternatively, we
can accumulate the flips of a single theta gate, generating the sample N cycles later.

2

Stochastic Transition Circuits

The stochastic transition circuit specification we describe, requiring only ergodic convergence to
P (S|X) by repeated iteration of T , can accomodate a wide range of implementations. One approach
to designing useful transition circuits is to draw from the literature on Markov chain Monte Carlo algo-
rithms.

1 Iteration and composition

Markov chain transition kernels obey composition rules. If our state space is p(xA, xB) ∈ R2, and we have
a kernel TA|B that will ergodically generate samples from p(xA|xB) and a kernel TB|A which will ergodically
sample from p(xB|xA), then T = TA|BTB|A will ergodically produce samples from p(xA, xB) (as long as
no states have zero probability). Similarly, T = αTA|B + (1− α)TB|A for α ∈ (0, 1), a stochastic mixture
of two kernels, also preserves invariance and extends the domain of ergodic convergence. References for
these and other composition laws are provided in the main text.

We can construct transition circuits that ergodically produce samples from the indicated conditional
probability distributions using many methods — such as Gibbs sampling and Metropolis-Hastings — and
combine them to sample from larger, more complex distributions.

Figure 2a shows a typical stochastic transition circuit, which produces an output sample St+1 condi-
tioned on inputs X. The only requirement is that P (S|X) be left invariant by the transition P (St+1|St).

2 Discrete Gibbs Sampling

Gibbs sampling is a technique which produces a Markov chain whose ergodic distribution is the indicated
target distribution of p(x1, · · · , xN) provided we can produce samples from the probability distribution
of one variable conditioned on the others.

That is, to construct a Markov chain to sample from p(xA, xB, xC) we need to iteratively draw samples

xA ∼ p(xA|xB, xC) (1)

xB ∼ p(xB|xA, xC) (2)

xC ∼ p(xC |xA, xB) (3)

(4)

Note that if the state space of x is discrete, then it is easy to sample from x by computing p(xA, xB, xC)
with xB and xC fixed for all values of xA, and then normalizing and sampling the resulting distribution.

Figure 2c shows Tgibbs, a typical stochastic transition circuit allowing gibbs sampling. Note that
the current value of S, that is, St, does not appear anywhere. Rather, this circuit samples directly
from P (S|X). Figures 2d,e, and f show example implementations for TGibbs highlighting the trade-offs.
Figure 2d shows the explicit, internal mathematics necessary to, in parallel, accumulate and normalize
the energies before producing a sample. Figure 2e simply looks up the table of appropriate probabilities
conditoned on the inputs. This is the fastest option, but consumes space that grows exponentially in
the number of bits needed to describe S and S (assuming there are no symmetries which can be used
to compress the table). Figure 2f is a serial sampling gate, which we describe in further detail in the
subsequent supplemental section. It stores the intermediate energy values, normalizes them in a second
pass through the energy ram, and produces a sample. This design is optimized for sampling from discrete
distributions with large state spaces (such as 1024 or more possible output symbols).

3

D QSt+1 S|X

St+1~P(St+1 | St,X)

St

X

TS|X

X

SAMPLE

(a)

D Q S|X
X

SAMPLE

Qsim

alpha θ

0
1

(b) TMH

D Q S|XX

SAMPLE

S ~ P(X | S)

(c) TGibbs

SAMPLE

E1
1
Z

LogSumExp
Accumulate

EXP EXP

DISCRETE-SAMPLE

EK
1
Z

neighbors in

S|XD Q

(d)

SAMPLE

LUT
ADDR

Discrete
Sample

E EIN OUT S|XD QX

(e)

AIN

DIN

AOUT

DOUT

Input
Counter

Readout
Counter

Energy RAM

LSE Accum

Exponentiate

X Y

X Y

ENERGY

y = log 2 (2
x + 2 y)

y = 2 x

Stream
Sample

X

LABELOUT

LABELIN

S|XD Q

SAMPLE

Control
FSM

energy to probability sampling state

Energy
Evaluation

X X E

(f)

Figure 2: a.) Stochastic transition circuits take a set of conditioning inputs X and produce a sample
St+1. The only requirement is that P(S—X) be left invariant by the transition P (St+1|St) b.) A M-H
transition circuit involves a proposal distribution Qsim to propose a new value for St+1, accepting or
rejecting based upon the MH acceptance ratio. c.) Gibbs sampling transition circuits produce a value
St+1 conditioned on X only – they ignore the current value of S. d.) Space-parallel gibbs transition
circuit with mathematical internals. e.) Lookup-table based gibbs transition circuit f.) Serial gibbs
transition circuit stores the energy value associated with each possible output state, and then normalizes
and samples.

4

SAMPLE A

LUTB

C

Discrete
Sample

E EIN OUT

LUT
A

Discrete
Sample

E EIN OUT

SAMPLE

SAMPLE

LUT
A

Discrete
Sample

E EIN OUT
SAMPLE

SAMPLE B,C

A

B

C

TA|B,C

TB|A

TC|A

Figure 3: Three transition circuits combined to produce samples from p(a, b, c). The conditional inde-
pendence in the problem allows for B and C to be sampled in parallel.

3 Metropolis-Hastings

If sampling from the conditional distributions is not possible, an ergodic Markov chain can still be
constructed using a collection of sampling elements that approximately sample from the conditional
distributions. This still allows us to ergodically sample from p(x1, x2, x3) (continue the above example).
The algorithm to do this, called Metropolis-Hastings, is the root of most MCMC schemes, and works by
proposing new values and then “accepting” or “rejecting” them according to specific criteria.

Colloquially, proposal distribution q(x′|x) is used to sample a “new” value for the state, x′, and then
MH tells to accept this “new” value of the state with probability a, computed via:

α = min

(
1,
p∗(x′)

p(x)

q(x|x′)
q(x′|x)

)
(5)

A MH transition kernel for a single variable x1 can be chained with kernels for x2 and x3, via
compositionality. Figure 2b shows TMH , an idealized Metropolis-Hastings transition circuit, in which
Qsim samples a new candidate state value, and the evaluation of the acceptance probability weights a
theta gate, determining acceptance or rejection.

5

e1

eK

ENERGY-IN1

ENERGY-INK

SAMPLE

OUT
P (out = i |{ ei })

=
exp(ei)
K
exp(ek)

m.n

m.n

log K

Figure 4: The normalizing multinomial gate: Accepts K unnormalized (energy) values representing
ei = log2 pi and samples from the normalized distribution

Sampling at very low bit precision

If X and Y are independent random variables, then P (x, y) = p(x)p(y). We’ve seen above how
independence is common feature of many probabilistic models, and how it enables us to exploit parallelism
at varying granularities.

Probabilistic systems often compute the probability of many independent events, resulting in the
multiplication of a large number of values p ∈ [0, 1]. To avoid overflow, and facilitate computation,
it is useful to express all these calculations logarithmically – here we use a log2 encoding for most
of our values. This lets us replace expensive high-dynamic-range multiplications with more-efficient
additions with reduced dynamic range demands. There’s a cost, however – addition becomes more
expensive, as we must first convert the log-space representation back into real values before performing
the addition. Similarly, if we want to sample from a (normalized) list of log values, we must exponentiate
and accumulate.

The first circuit element exploiting this encoding is the normalizing multinominial gate, which takes an
unnormalized stream of K log2 encoded energies, normalizes them to a probability distribution, and draws
a sample from this probability distribution. Thus we can draw exact samples from any unnormalized
vector of energies. This frequently arises when attempting to Gibbs sample over a discrete variable, where
we can evaluate log2 p

∗(x|·) for some x ∈ {1 . . .K}. We can use the normalizing multinomial gate to then
sample from p(x|·).

for i in 0..{K-1}:
score[i] = p*(x=i)

S = \sum_0ˆ{K-1} exp(score[i])

for i in 0..{K-1}:
probs[i] = score[i]/S

return MultinomialSample(probs)

To then gibbs sample, our circuit must take, as input, the values of the neighbor states that it is

6

AIN

DIN

AOUT

DOUT

Input
Counter

Readout
Counter

Energy RAM

LSE Accum

Exponentiate

X Y

X Y

ENERGY

y = log 2 (2
x + 2 y)

y = 2 x

Stream
Sample

X

LABELOUT

LABELIN

S|XD Q

SAMPLE

Control
FSM

energy to probability sampling state

Energy
Evaluation

X X E

Figure 5: Implementation of the normalizing multinomial gate

conditioning on – to sample from p(x1|x2, x3) we must take the values of x2 and x3 as inputs.
Normalization takes place with very finite-precision arithmetic using a variety of mathematical ap-

proximations that, at first glance, seem rather crude. Scores are saved internally in a small RAM, while
simultaneously being accumulated via a log-sum-exp accumulator. Once all values are seen, the unit
reads out the saved values, subtracts off the normalizing sum, exponentiates the log value, and feeds the
result into the stream sampler to produce the eventual output. The accuracy of the results is discussed
later.

3.1 Functional approximations within

To approximate the addition of two numbers (the log of the sum of the exponentiation of the two values,
or “log sum exp”), we use the familiar (exact) trick where Z = max(x, y) and W = min(x, y), and then we
return Z + log2(1.0 + 2W−Z). This both allows increased dynamic range and lets us work with a smaller
lookup table for f(∆) = log2(1.0 + 2∆). The approximation unit compares the two inputs, computes the
delta, and then returns the larger Z plus the lookup-table-generated correction.

The resulting approximation is extremely accurate, as show by the plots of values and errors in
figure 6.

3.2 Exponentiation

We must exponentiate the resulting, normalized scores to sample from them. The similarity-across-scales
of exp makes it very easy to use a limited-size lookup table.

3.3 Random Starts to remove bias

Numerical errors for large energy vectors can accumulate, resulting in an underestimation of the total
probability mass of the distribution; that is,

∑
pi < 1. As a result, we sometimes frequently end up with

too much probability mass assigned to the final state possibility k.
To remove this systematic bias we circularly permute the probability vector before computing the

CDF and sampling. A circular permutation can be easily implemented by randomly sampling the starting

7

16 14 12 10 8 6 4 2 0
x value

14

12

10

8

6

4

2

0

2

lo
g 2

(2
x

+
2y

)

y= 0

y=-5

y=-10

y=-12

y=-15

Log-sum-exp, 6.2 precision

16 14 12 10 8 6 4 2 0
x value

0.3

0.2

0.1

0.0

0.1

0.2

0.3

e
rr

o
r

Log-sum-exp error, 6.2 precision

(a) m=6, n=2

50 40 30 20 10 0
x value

50

40

30

20

10

0

10

lo
g 2

(2
x

+
2y

)

y= 0

y=-10

y=-20

y=-30

y=-40

y=-50

Log-sum-exp, 8.4 precision

50 40 30 20 10 0
x value

0.06

0.04

0.02

0.00

0.02

0.04

0.06

e
rr

o
r

Log-sum-exp error, 8.4 precision

(b) m=8, n=4

50 40 30 20 10 0
x value

50

40

30

20

10

0

10

lo
g

2
(2
x

+
2
y
)

y= 0

y=-10

y=-20

y=-30

y=-40

y=-50

Log-sum-exp, 10.6 precision

50 40 30 20 10 0
x value

0.015

0.010

0.005

0.000

0.005

0.010

0.015

e
rr

o
r

Log-sum-exp error, 10.6 precision

(c) m=10, n=6

Figure 6: “Log Sum Exp” (log2(2x + 2y)) approximation. Each curve is a parametric varying of x for a
fixed value of y, and we plot the results of the approximation unit (solid line) and the true (floating-point-
estimated, dashed line) value. The lines overlap so well that we also plot their differences (the error) to
the right. Colors are consistent across figures. Each row is a different bit precision.

8

position and taking care to wrap around at the end of the array.

3.4 Resources

Figure 7 shows how look-up table and flip flop utilization vary as a function of both internal bit precision
and the maximum arity for the multinomial sampler. Going from the smallest 6-bit, k = 16 unit to the
largest 12-bit k = 1024 unit increases the combinational logic requirements by four times and doubles
the amount of stateful silicon logic.

150 200 250 300 350
flip flops

100

200

300

400

500

600

700

800

900

lo
o
ku

p
 t

a
b
le

s

Silicon resource utilization in multinomial sampler

k=16
k=64
k=512
k=1024

Figure 7: Resource utilization for the Multinomial Sampler, for samplers configured with several different
values of K, and bit precisions varying as above. Larger circles indicate higher bit precisions, ranging
from six bits to twelve.

4 Entropy Sources

There are many possible sources of entropy for the stochastic logic gates. High-quality entropy (suitable
for cryptographic application) could be generated internally in silicon implementations, the result of
amplification of atomic-level phenomena, including Johnson noise and shot noise. It could be provided
externally, from other sources of natural entropy, such as radioactive decay.

But for all of the applications and elements we’ve identified, cryptographic randomness is overkill –
we only need pseudorandomness. Assessing the quality of randomness from a pseudorandom source is a
notoriously challenging problem (see (2002)). In general, we care about both the marginal distribution
of the samples from a PRNG – for x1, x2, . . . , xn, how close is P (xi) to Uniform(0, 1) – and any possible

9

N p = 0.5 p = 0.50002

N = 10 5 5
N = 100 50 50
N = 1000 500 500
N = 10000 5000 5000
N = 50000 25000 25001

Table 1: Two coins with probability of heads specified to 16 bits, differing only in the LSB. It takes an
average of 50000 flips to even detect the differences in weightings.

long-running correlations between xt and xt+k. Of course, any PRNG with a finite latent state space will
ultimately exhibit periodicity – the output will “wrap around”, resulting in xt = xt+T for a PRNG with
period T .

The classic Mersenne Twister (1998) pseudorandom generator has a phenomenally long period
(219937 − 1) but pays for it by carrying a massive “state” of nearly 20kB. This period is overkill for
many applications, including those we care about.

George Marsaglia introduced the “Xorshift” family of random number generators, which use sub-
stantially fewer state bits (2003) but still pass all of the known empirical tests for PRNGs. Here we
implement the 128-bit XORShift, which has a total of 128 state bits and a period of 2128 − 1. 1 shows
the pseudocode for the 128-bit RNG; the entropy is output via the state variable w.

Algorithm 1 XORShift RNG 128

x ← seed[0]
y ← seed[1]
z ← seed[2]
w ← seed[3]
tmp ← x ⊕ Left-Shift(x, 15)
x ← y
y ← z
z ← w
w ← (w⊕ Right-Shift(w,21)) ⊕ (tmp& Right-Shift(tmp, 4))
return w

The underlying implementation is exceptionally tiny, consuming a mere 160 slice flip flops and 33
lookup tables on our target Virtex-6 FPGA. We have validated the output of our PRNG exactly matches
the equivalent software implementation. It can operate at up to 200 MHz, delivering 6.4 Gbps of ran-
domness. Note even at that phenominal rate, it will take 5× 1022 years to wrap around. The PRNG is
free-running, and multiple independent sources of entropy can be created by either time-division multi-
plexing the output of one single PRNG or instantiating multple PRNGs with different seeds.

5 The effects of bit precision

Small differences in the distributions underlying samplers are difficult to resolve without a very large
collection of samples. This can be seen by considering two weighted coins whose probability of heads
agrees to the 16th least-significant bit (Table 1). It takes roughly 216 samples from these distributions to
detect any difference in the encoded distribution.

Of course, digital signal processing engineers have been taking questions of bit precision seriously for
decades. The available dynamic range is often limited by the underlying sensor technology – modern

10

high-end scientific cameras top out at 12 bits of intensity per pixel. Professional studio-quality audio
systems exceed the dynamic range of the human ear at a mere 24 bits.

This stands in contrast to the historic focus on linear-algebra-based methods in data analytics, scien-
tific computation, and machine learning, which have lead to a strong demand for more and more IEEE-754
floating point units from hardware vendors. Purveyors of scientific computing such as nVidia are only
taken seriously once their hardware supports 64-bit floating point.

But when sampling from distributions, we can be incredibly insensitive to low bit precision. We can
measure this property more precisely by using the multinomial sampling unit. We use the multinomial
sampling unit because it has the most internal arithmetic computation, and thus should be most sensitive
to bit precision errors. It also forms a core part of subsequent circuits.

We create three samplers representing three weighted dice, with k = 10, 100, and 1000 sides, and
parametrically vary the entropy of their underlying discrete distribution from 0 to log2K bits.

Figures 8, 9, and 10 shows the results as we vary the number of bits in a representation, using m.n
encoding. We encode the true distribution in the circuit, and then compute an empirical distribution
from a bag of 100000 samples generated by the synthesized circuit. In all cases, the KL divergence from
the encoded distribution to the empirical distribution is remarkably low for all encodings with m ≥ 6
bits.

As the representation becomes bit-starved, we see that the KL still stays low in two regimes : very
high and very low entropy distributions. This makes intuitive sense – for maximally-entropic source
distributions (that is, uniform), encoding the array of identical values is easy. Similarly, for minimal-
entropy distributions with all mass concentrated on a single value, encoding the distribution is easy.

Figures 8c, 9c, and 10c show QQ plots of true versus recovered-from-hardware distributions, for
distributions with varying entropies (listed at left). Again, the distributions look almost perfect, except
for medium-to-high-entropy distributions in very low bit-precision regimes.

6 Resource Utilization

But performing large floating-point operations consume a massive quantity of silicon resources when
compared to our stochastic sampling elements. As figure 11 shows, the area consumption by sampling
elements varies with their flexibility, the arity of their output, and the dynamism and precision of their
internal representations. We synthesized a 64-bit IEEE-754 FPU (2009) with the Xilinx toolchain. Note
that this is a very conservative estimate for the number of silicon resources, as the Xilinx synthesis tools
used some of the embedded multiplier blocks, whereas all the comparison units were tested entirely with
slices and flipflips (no BRAMs or DSP48s were allowed).

Also note that while the XORShift RNG takes up more silicon area than some of the other sampling
elements, a single PRNG instance can supply entropy to dozens of stochastic circuit elements.

11

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

Bits in representation

0.10

0.05

0.00

0.05

0.10

K
L

fr
o
m

 t
ru

e
 d

is
tr

ib
u
ti

o
n
 t

o
 m

e
a
su

re
d

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

E
n
tr

o
p
y
 o

f
so

u
rc

e
 d

is
tr

ib
u
ti

o
n

(a) KL vs bit precision

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

bit precision

0.0

3.0

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 e

n
tr

o
p
y
 (

b
it

s)

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

K
L

D
iv

e
rg

e
n
ce

(b) Entropy vs bit-precision

1
.1

6

8.4, 12 8.4, 8 6.4, 10 4.2, 6 4.2, 4

1
.7

7
1
.9

5
2
.1

1
1
.9

0
1
.6

1
2
.1

6
2
.3

0
2
.8

5
2
.4

7
2
.3

2

(c) QQ plot, true vs circuit

Figure 8: The effects of bit precision on KL divergence for a K = 10 multinomial sampling gate, a.) KL
vs bit precision, b.) heatmap showing regions of entropy/bit-precision with high KL, and c.) example
distribution QQ plots. Each column is a different bit precision (labeled at top) and each row is for a
different input entropy. The QQ plot itself compares the true CDF (x-axis) with the empirical (y-axis).
Perfect agreement results in all points lying on the y = x line.

12

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

Bits in representation

0.0

0.2

0.4

0.6

0.8

1.0

K
L

fr
o
m

 t
ru

e
 d

is
tr

ib
u
ti

o
n
 t

o
 m

e
a
su

re
d

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

E
n
tr

o
p
y
 o

f
so

u
rc

e
 d

is
tr

ib
u
ti

o
n

(a) KL vs bit precision

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

bit precision

0.0

6.5

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 e

n
tr

o
p
y
 (

b
it

s)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

K
L

D
iv

e
rg

e
n
ce

(b) Entropy vs bit precision

1
.8

3

8.4, 12 8.4, 8 6.4, 10 4.2, 6 4.2, 4

1
.7

6
1
.8

5
2
.2

4
2
.1

4
3
.1

5
3
.4

5
3
.7

6
4
.4

6
4
.2

7
4
.8

0

(c) QQ plots, true vs circuit

Figure 9: The effects of bit precision on KL divergence for a K = 100 multinomial sampling gate, a.) KL
vs bit precision, b.) heatmap showing regions of entropy/bit-precision with high KL, and c.) example
distribution QQ plots. Each column is a different bit precision (labeled at top) and each row is for a
different input entropy. The QQ plot itself compares the true CDF (x-axis) with the empirical (y-axis).
Perfect agreement results in all points lying on the y = x line.

13

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

Bits in representation

0.0

0.5

1.0

1.5

2.0

2.5

K
L

fr
o
m

 t
ru

e
 d

is
tr

ib
u
ti

o
n
 t

o
 m

e
a
su

re
d

1

2

3

4

5

6

7

8

9

E
n
tr

o
p
y
 o

f
so

u
rc

e
 d

is
tr

ib
u
ti

o
n

(a) K=1000

4
.2

4
.3

5
.2

5
.3

5
.4

6
.2

6
.3

6
.4

6
.5

7
.2

7
.3

7
.4

7
.5

8
.2

8
.3

8
.4

bit precision

0.0

9.5

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 e

n
tr

o
p
y
 (

b
it

s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

K
L

D
iv

e
rg

e
n
ce

(b) K=1000

2
.2

7

8.4, 12 8.4, 8 6.4, 10 4.2, 6 4.2, 4

1
.7

5
2
.5

1
2
.5

3
2
.8

1
3
.4

9
4
.6

8
4
.9

5
5
.4

4
6
.3

7
7
.0

2

(c) QQ plots for example distributions

Figure 10: The effects of bit precision on KL divergence for a K = 1000 multinomial sampling gate, a.)
KL vs bit precision, b.) heatmap showing regions of entropy/bit-precision with high KL, and c.) example
distribution QQ plots. Each column is a different bit precision (labeled at top) and each row is for a
different input entropy. The QQ plot itself compares the true CDF (x-axis) with the empirical (y-axis).
Perfect agreement results in all points lying on the y = x line.

14

CPT k=2

2 inputs
4 bits

2 inputs
8 bits

2 inputs
12 bits

4 inputs
4 bits

4 inputs
8 bits

4 inputs
12 bits

6 inputs
4 bits

6 inputs
8 bits

6 inputs
12 bits

8 inputs
4 bits

8 inputs
8 bits

8 inputs
12 bits

CPT k=4

2 inputs
4 bits

2 inputs
8 bits

2 inputs
12 bits

4 inputs
4 bits

4 inputs
8 bits

4 inputs
12 bits

6 inputs
4 bits

6 inputs
8 bits

6 inputs
12 bits

8 inputs
4 bits

8 inputs
8 bits

8 inputs
12 bits

CPT k=6

2 inputs
4 bits

2 inputs
8 bits

2 inputs
12 bits

4 inputs
4 bits

4 inputs
8 bits

4 inputs
12 bits

6 inputs
4 bits

6 inputs
8 bits

6 inputs
12 bits

8 inputs
4 bits

CPT k=8

2 inputs
4 bits

2 inputs
8 bits

2 inputs
12 bits

4 inputs
4 bits

4 inputs
8 bits

4 inputs
12 bits

6 inputs
4 bits

6 inputs
8 bits

6 inputs
12 bits

8 inputs
4 bits

multinomial

(8.4)bits
q=12
k=1024

(8.4)bits
q=12
k=16

(4.2)bits
q=6
k=1024

(4.2)bits
q=6
k=16

64-bit FPU

XORshift RNG

look-up tables
flip flops
total area

Figure 11: Comparing approximate silicon area between a 64-bit IEEE-754 floating point unit and various
examples of our stochastic gates, including the Conditional Probability Table gate and the normalizing
multinomial gate. Dark grey areas are the purely-combinational lookup tables, lighter areas are the
stateful flipflops. See text for an explanantion of bit precision designations.

Implementation details for vision applications

This section gives implementation details for our vision applications, beginning with the formulation
of factor graph models for low-level vision problems, and moving through the performance details of a
stochastic video processor based on stochastic digital circuits. This video processor is reprogrammable in
software to emulate arbitrary discrete square-lattice factor graphs; frames can be streamed in and latent
samples streamed out in real time.

7 Low-level Vision Factor Graph

A low-level vision factor graph (figure 12) is a probabilistic model for image processing problems where
per-pixel data Yi,j is used to estimate some unknown (latent) per-pixel random variable Xi,j . The
latent state variables are arranged in a square lattice. The factor fE(xi,j , yi,j) dictates the probabilistic
relationship between the observed variables and the latent ones. Additionally, a “latent, pairwise” factor,
fLP (x, x′) constrains the relationship between a latent state variable and its lattice neighbors. Typically,
this factor serves as a smoothness prior, favoring configurations where adjacent latent variables have

15

Observed Variables
(Pixels)

Latent Variables
(Unknown)

xi+1,j+1

xi,j xi,j+1

xi+1,j

Yi+1,j+1Yi+1,j

Yi, j Yi, j+1

fLP

fLP

fLP

fLP

fE

fE
fE

fE

Figure 12: Low-level vision lattice factor graph. Some lattice of unobserved, latent state variables Xi,j

generate observed values Yi,j through an external potential fE . The relationship between adjacent Xi,j

and Xi′,j′ is constrained by the latent, pairwise potential fLP . Note that in this formulation, both fLP
and fE are homogeneous in the graph.

similar values. Thus

P (Xi,j = x) ∝ fE(x, yi,j)
∑

x′∈Neighbor(Xi,j))

fLP (x, x′) (6)

Here we am only considering the case of homogeneous densities – that is, the functional form for all
fE are the same and all fLP are the same.

8 Resource virtualization and parallelization

8.1 Virtualization

The homogeneity and regular lattice structure of the factor graphs here suggests an opportunity for
resource sharing. Only the state values Xi,j and Yi,j differ between adjacent pixels.

To explore the opportunity for virtualization, consider a simpler factor graph. Figure 13 shows a
simple discrete-state factor graph with a chain-topology. In this factor graph, the state variables all have
the same domain, and the pairwise potentials are all identical.

Rather than creating a dedicated stochastic circuit to perform sampling at every site, we can create
a virtualized stochastic circuit. This virtualized circuit can produce a sample for Xi ∼ Xi|Xi−1, Xi+1.
Thus we can load the Xi−1 and Xi+1 values from someplace else, sample a new value for Xi.

Thus, all of the relevant structure of this factor graph has been captured in the resulting virtualized
circuit, and the relevant state variables can simply be streamed in serially, in effect “sliding” the virtualized
circuit down the graph. A similar scheme can be used in a square-lattice factor graph (such as those
we’re working with here), or indeed any factor graph with highly regularized structure.1

1This regularity is not uncommon in models which use a great deal of data, such as image processing and time series.

16

Sampling this variable

Only depends on these
two via conditional

independence

b.) Create "virtualized"
stochastic circuit:

SAMPLERR

SAMPLERR

c.) Stream through
relevant state:

SAMPLERR

SAMPLERR

t=1

t=2

t=3

a.) The model:

Figure 13: Virtualization example for linear-chain factor graph. a.) The model consists of a repeating
chain of variables connected pairwise by homogenenous factors. Sampling a new value for a particular
variable requires conditioning on the neighbor state values and evaluating the connected factors. b.) We
can create a virtualized stochastic circuit which contains the factors, and allows state values to be read in
and out, sampling a new value for the center variable. c.) The vitualized circuit then can sample values
for the entire factor graph by streaming in the variable values, performing the sample, and writing the
output.

17

a. maximally
parallel

b. tiled parallel c. simultaneous
tiled parallel

Figure 14: Parallelization via conditional independence. a. Maximally parallel, derived from the graph
coloring. All red sites can be sampled simultaneously b. The naive coarsening, tiled parallel, in which
inference in the same color of tile can be performed simultaneously c. Simultaneous tiled parallel, where
we carefully time the sequential sampling within a tile to guarantee correctness, allowing sampling on
tiles to happen simultaneously.

8.2 Parallelization

We have previously shown that factor graphs with conditional independencies provide extensive opportu-
nities for paralellization. The granularity of that parallelization can be varied. In 14a, the variables in a
square lattice factor graph are shown, colored for parallelism – sites with the same color can be sampled
simultaneously. It’s entirely possible to “coarsen” this parallelism, as seen in figure 14b, resulting in“tiles”
of sequential serial inference, where inference can take place simultaneously in similarly-colored tiles.

We go one step further here, as shown in figure 14c. By carefully controlling the sequential scan of
particular random variables within a tile, we can be sure that no two adjacent sites between tiles are the
target of inference simultaneously, a condition which would result in invalid inference. This allows serial
inference to occur for all tiles simultaneously.

9 Circuit Architecture

Here we describe a tiled architecture for efficient inference in low-level vision factor graphs which exploits
parallelism and virtualization to make larger models practical. The resulting “Lattice Factor Graph
Engine” consists of an array of lattice-interconnected Gibbs tiles, each of which performs Gibbs sampling
on a subtile of the total lattice factor graph.

Reencoding the factor graph (figure 15), replaces homogeneous external field potentials and observed
data states with heterogeneous external field potentials that incorporate the per-pixel data. This enables
the computation of the arbitrary external field relationships off-line.

9.1 Gibbs Tile

The Gibbs Tile virtualizes a single normalizing multinomial gate stochastic element over a rectangular
subregion of the factor graph (figure 16, performing sequential Gibbs sampling on this region of the
graph. The Gibbs tile stores the requisite state for the variables in this portion of the graph in the Pixel
State controller, which also handles scheduling and coordinates communication with adjacent tiles. Each
Gibbs Tile can be synthesized with a particular latent pairwise density, including the above-mentioned
lookup table density. The external field density is implemented as a runtime-reprogrammable SRAM, An
XORShift pseudo-random number generator (section 4) provides the needed entropy.

This bears repeating. The lookup-table density allows for run-time reconfiguration, and thus we could
potentially build an ASIC capable of performing inference in an arbitrary lattice-structured factor graph.

18

xi,j

Yi, j

fE

Resulting MRF

xi+1,j+1

xi,j xi,j+1

xi+1,j

fLP

fLP

fLP

fLP

fE(i+1,j)

fE(i,j) fE(i, j+1)

fE(i+1, j+1)

xi,j

fE(i, j)

Homogeneous external potentials,
explicit external state (data)

Heterogeneous external potentials
that incorporate the data.

a) b) c)

Figure 15: Re-encoding of the factor graph from using homogeneous external potentials and heterogeneous
data (a.) to just using heterogeneous external potentials (b.), without loss of generality. c.) shows the
resulting factor graph that is actually used.

While the external field density (also encoded as an LUT) can be easily updated with single-frame latency,
configuring the LUT pairwise density can take several frame cycles.

To perform Gibbs sampling on its region of the factor graph, the gibbs tile sequentially iterates
through sites, looking up the relevant adjacent state bits and then having the Gibbs Core Sampler
produce a sample from the appropriately-conditioned distribution.

Algorithm 2 Gibbs Tile Operation

for all v in VirtualizedSet do
ni ← LookupNeighbors(v)
offset ← ComputeOffset(v)
newv ← GibbsCoreSample(ni, offset)
v ← newv

end for

9.2 Pixel State Controller

The pixel state controller (PSC in figure 17) coordinates sampling over a virtualized region of per-pixel
latent state, storing the latent state in RAM internal to the PSC. The PSC drives the Gibbs core, and
stores the resulting sampled value.

Most importantly, the PSC coordinates the state virtualization, sequentially scanning through “active”
states one pixel at a time, looking up the neighboring latent states, and then presenting them in a unified
way to the gibbs unit.

The lattice structure of the factor graph results in adjacent tiles needing to see the “edge” latent
pixels of their neighboring tiles. The PSC contains dual-ported edge RAMS that store buffered copies of
this particlar tile’s edge state for interruption-free lookup by neighboring tiles (labeled “Adjacent state
IO” in figure 16).

For off-device IO, the internal state variables in the PSC are readable and write-able through an
external port.

9.3 External Field Density RAM

We encode the per-pixel external field density as a lookup table in a dense SRAM. The PSC selects the
relevant region of this RAM that corresponds to the lookup table for the particular active site.

19

PSC

GIBBS

XOR RNG

CONFIG

EXTF DENSEXTF WRITE

PIXEL
READ/WRITE

ADJACENT
STATE IO

ADJACENT
STATE IO

ADJACENT
STATE IO

ADJACENT
STATE IO

LP
 D

E
N

S
IT

Y
Figure 16: Gibbs tile, consisting of the pixel state controller, the Gibbs unit with local potential density,
the external field density lookup table, and the PRNG. The tile communicates with neighboring tiles via
adjacent state IO.

0 1 2 3 4

10 11 12 13 14

20 21 22 23 24

Latent State Pixel RAM

110 12 21

t=n

Pixel State Controller

state values for
density evaluation

Target site for
inference

Selected
neighbor
states

11
Active state

for EF selection

0 1 2 3 4

10 11 12 13 14

20 21 22 23 24

Latent State Pixel RAM

211 13 22

t=n+1

Pixel State Controller

12

0 1 2 3 4

10 11 12 13 14

20 21 22 23 24

Latent State Pixel RAM

312 14 23

t=n+2

Pixel State Controller

13

Figure 17: Pixel state controller behavior. At time t = n, the PSC centered on node 11 presents the
neighborhood state values to the downstream core. At subsequent times, the active neighborhood shifts
to the right.

Algorithm 3 Gibbs Core Sampling algorithm

for x = 0 to K do
extfscore ← extfram(offset + x)
lpscore ← density(neighborvals, x)
totalscore ← extfscore + lpscore
multinomial-sampler.add(totalscore)

end for
return multinomial-sampler.sample()

20

LP Density

A B C D

X

External Field
Look-up Table

Multinomial
Sampler

Input State Values

Sampled
State Value

Entropy

Figure 18: Gibbs core enumerates through possible values for this site’s latent state variable, setting X
to each value and evaluating the LP density. The score from the LP density and the external field lookup
table are summed. The multinomial sampler takes these unnormalized scores and produces a sampled
state value.

9.4 Gibbs Core

Once the PSC has selected an active site xi,j and looked up the relevant neighboring values, the Gibbs
Core Sampler computes the full conditional score for all values of xi,j (algorithm 3). For each of those
values xk we compute Si,j(x

k) = fE(xk) +
∑

x′∈neighbors fLP (xk, x′). The Multinomial sampler normalizes
and samples from the resulting score table. The Gibbs Core can also temper the resulting scores, allowing
for annealing and tempering MCMC operations.

9.5 Latent Pairwise densities for specific models

The latent pairwise density is a pipelined, fixed-latency arithmetic primitive that performs
∑

x′∈N fLP (xk, x′).
The LP density module has configuration registers which enable the setting of specific constants within
the density. Each input has an optional enable which selectively includes that term in the resulting
computation.

9.6 Configuration Parameters

The stocahstic video processor is parametrized to allow the exploration of design tradeoffs and to generate
application-specific engines targeted for certain problem domains.

Figure 19 shows the relevant parameters – we can vary the number of Gibbs tiles in either dimension,
the number of sites within a tile, and various internal precision calculations within a tile.

9.6.1 Tile Efficiency

Gibbs sampling a site is O(K), where each site can take on K possible values. For the stereo circuit
described below, for example, there are K = 32 discrete depth values. Since we must evaluate each

21

Tiles H

Tiles W GT W

 G
T
 H

(m,n),q, k

Factor Calc: (m,n)
External Field: (m,n)
Gibbs Norm: (m,n)
Gibbs Exp : q
Number of state values: k

a. Entire MRF Engine b. Gibbs Tile Sites c. Gibbs TIle Internals

Figure 19: Stochastic Video Processor parameters. a.) Tiles H and Tiles W control the height and
width of the engine, in tiles. b.) Each Gibbs Tile samples GT H by GT W sites. Within the tile,
(m,n), q)-bit-precision computations are performed, with each variable taking on k possible values.

Figure 20: Performance overhead of architecture per state variable value. As the number of possible
discrete states per variable increases, we approach the expected limit of 1.5 ticks per possible value (black
dashed line).

possible state value before discretely sampling, we must take at least K ticks. The sampling step then
needs E[K] ticks to sample a value, suggesting a lower-bound on K · E[K], or ≈ 1.5K ticks per site.

Figure 20 shows empirically-measured tile performance for a 8x8 tile as the number of possible state
values increases. Since there is constant startup and handshaking overhead, low-state-value variables
tend to be more inefficient.

10 Comparison to explicit compilation

For reference, we compare the performance of our lattice markov random field architecture to the per-
formance of circuits generated by our compiler. We focus on fully space-parallel Potts models, where we
can generate an equivalent fixed-function lattice factor graph engine 2 for k-state Potts models (1982)
and measure performance, in terms of samples per second and silicon resources used.

2Although the Lattice Factor Graph engine comes along with external field support.

22

Table 2: Resource utilization and performance for a 4-state 20x20 compiled Potts model.

Configuration Performance Resources

Vars Bits Scans/sec Clock (MHz) Slice FFs Slice LUTs BRAMS

400 5 1468535 125.0 76917 55710 280

Table 3: Resource utilization and performance for a 4-state 128x128 Potts Lattice Factor Graph circuit.

Configuration (total vars=16384) Performance Resources

Vars/Tile Tiles Bits Scans/sec MHz Slice FFs Slice LUTs BRAMS

256 64 (6,2),8 13673 125.0 29559 35265 96
256 64 (8,4),12 13667 125.0 34231 44293 96
128 128 (6,2),8 27243 125.0 53936 64039 160
128 128 (8,4),12 27225 125.0 63280 82091 160
128 128 (6,2),8 27228 125.0 53952 64296 160
128 128 (8,4),12 27232 125.0 63296 82348 160
64 256 (6,2),8 54074 125.0 102457 120546 288
64 256 (8,4),12 54060 125.0 121145 156646 288

To synthesize the engine with the Potts latent pariwise potential, we create HDL representing fLP (x, x′)
and the module is replicated and synthesized.

The compiler can only fit a 400-node 4-state Potts model in our target Virtex-6 LX240 FPGA, but
achieves 1.45 million full gibbs-scans per second with 5-bit precision (table 2).

We can synthesize a variety of Potts lattice factor graph engines for comparison, all resulting in a
16,384-node MRF (Table 3). We can vary the number of variables per tile – more state values per tile
results in an engine that consumes fewer FPGA resources, but only scans at 13k scans/second. Or, we
can use more FPGA resources, and a larger number of smaller tiles to sample at up to 55k scans per
second. Note that while the compiler-generated factor graph is 25 times faster than the lattice engine,
the lattice engine is solving a model 40 times larger.

11 Stochastic Video Processor

The virtualized circuit engine can already be loaded with data and the external field configurations at
runtime. Here we extend the runtime reconfigurability to include all factors in the model, replacing the
above fixed-function pairwise factors with a generic lookup table.

11.1 Resources and Speed

12 Depth estimation for Stereo Vision

The primate visual system uses stereopsis to estimate object depth, exploiting the image difference
between the right and left eyes. Objects that are very close to the observer appear to be located at
different horizontal positions on the eyes. Farther-away objects differ less in their separation (or disparity)
between the eyes, with the far background identical for both eyes (figure 21).

The MRF model from (2003) infers disparity, and thus distance from the camera, using a low-level
vision markov random field. The latent variables xi,j are the disparity between the left and the right

23

Table 4: Resource utilization and performance for a 32-state 128x128 Lookup-table MRF circuit.

Configuration Performance Resources

Vars/Tile Tiles bits Scans/sec Clock (MHz) Slice FFs Slice LUTs BRAMS

128 128 (4,2),6 14468 125.0 55874 352 69758
128 128 (6,2),8 14389 125.0 59714 352 78848
128 128 (8,2),10 14364 125.0 64066 352 91010
128 128 (6,4),8 12266 125.0 62402 352 88322
128 128 (8,4),12 12248 125.0 67266 352 100228

Left Camera Right Camera

Figure 21: Stereo geometry calculations. There is substantial overlap between left and right camera
views. Closer objects (blue) appear to shift more between adjacent frames than objects that are further
away (red).

image; the larger the value xi,j , the greater the separation of the object between the left and right frames,
and thus the closer the image is to the cameras.

Thus we must define two functions. The first is the latent pairwise factor, fLP (x, x′) between two
adjacent nodes. Tappen and Freeman use a Potts-model-style factor, where:

fLP (x, x′) =

{
0 if x = x′

ρI(∆I) otherwise
(7)

where ρI(∆I) is a function of ∆I = |x− x′|,

ρI(∆I) =

{
P × s if ∆I < T
s otherwise

(8)

where T is a threshold, s is the penalty for violating the smoothness constraint and P extra-penalizes
small smootness violations. The intuition here is simple: objects are in general a fixed distance away from
the camera, and thus the disparity is in general constant; abrupt jumps in disparity are to be expected,
as there are different objects in the scene. Smoothly-varying disparities, however (as once might expect
from a sphere) are uncommon and should be penalized accordingly.

The external field density Fe(xi,j , yi,j) computes the Birchfield-Tomasi dissimilarity (1998), a smoothed
between-pixel distance measure that is robust against aliasing.

24

(a) Ground Truth (b) Left Image

(c) software, 64-bit floating point (d) hardware, 12 bits (e) hardware, 8 bits

0 50 100 150 200 250 300 350
time (sec)

2.5

2.0

1.5

1.0

0.5

0.0

lo
g
 s

co
re

1e6 Score time series for sawtooth

hardware 12
hardware 8
software
ground truth

 0 100 200 300 400 500
time (ms)

2.5

2.0

1.5

1.0

0.5

0.0

lo
g
 s

co
re

1e6

(f) log score vs time, hw vs sw

Figure 22: Middlebury “sawtooth” example stereo depth dataset. Top row is the ground truth disparity
map, and subsequent rows are the empirical mean mean of 10 full annealing sweeps for the double-precision
software, and 12-bit and 8-bit hardware, circuits.

25

(a) Ground Truth (b) Left Image

(c) software, 64-bit floating point (d) hardware, 12 bits (e) hardware, 8 bits

0 50 100 150 200 250 300 350
time (sec)

2.5

2.0

1.5

1.0

0.5

0.0

lo
g
 s

co
re

1e6 Score time series for tsukuba

hardware 12
hardware 8
software
ground truth

 0 100 200 300 400 500
time (ms)

2.5

2.0

1.5

1.0

0.5

0.0

lo
g
 s

co
re

1e6

(f) log score vs time, hw vs sw

Figure 23: Middlebury “Tsukuba” example stereo depth dataset. Top row is the ground truth disparity
map, and subsequent rows are the empirical mean mean of 10 full annealing sweeps for the double-precision
software, and 12-bit and 8-bit hardware, circuits.

26

(a) Ground Truth (b) Left Image

(c) software, 64-bit floating point (d) hardware, 12 bits (e) hardware, 8 bits

0 50 100 150 200 250 300 350
time (sec)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g
 s

co
re

1e6 Score time series for bowling2

hardware 12
hardware 8
software
ground truth

 0 100 200 300 400 500
time (ms)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g
 s

co
re

1e6

(f) log score vs time, hw vs sw

Figure 24: Middlebury “Bowling2” example stereo depth dataset. Top row is the ground truth disparity
map, and subsequent rows are the empirical mean mean of 10 full annealing sweeps for the double-precision
software, and 12-bit and 8-bit hardware, circuits.

27

Frame n Frame n+1

Color indicates
direction

Saturation indicates
magnitude

Flow Field

Flow Legend

Example Vectors

Figure 25: Optical flow uses the local pixel differences between frame n and n + 1 to compute a dense
flow field, indicating the direction and magnitude of each pixel’s interframe motion. In the above, flow
vector direction is indicated by color, and flow magnitude is indicated by saturation. Stationary objects
are thus white.

We use three rectified, intensity-calibrated image pairs from the stereo benchmark dataset created by
Scharstein and Szeliski (2001). These images have known ground truth depth maps to enable evaluation
of our MRF engine at both 8.4 and 6.2 bit precisions. The results (figures 22, 23, 24) are shown for the
full 64-bit software engine as well as 8- and 12-bit MRF engines.

The stochastic video processor finds a total score almost as good as the version computed using Gibbs
sampling using IEEE-754 64-bit floating point on a 2.8GHz Intel Xeon, literally three orders of magnitude
faster. This is in spite of the clock rate of the video processor being only 125 MHz. For most examples,the
quality of the 12-bit solution is nearly as good as the floating-point version, although the limited dynamic
range of the 8-bit version results in some areas (like the center of the bowling ball) failing to find ground
truth.

13 Dense Optical Flow for Motion Estimation

The visual system is also required to estimate the motion of objects in the visual scene.This can be
accomplished by computing the optical flow field, associating with each pixel a flow vector indicating
the relative motion between the frame at time t and t + 1. The optical flow field also helps in parsing
the 3D structure of the environment, estimating object boundaries, and computing the motion of the
sensor. While Verri and Poggio (1989) showed that the optical flow field is not the same as the true 2-D
projected motion field, it is often close enough for computer vision applications.

Markov random fields have been used successfully to estimate discontinuous optical flow (1993). A
MRF for optical flow can be computed as follows: we discretize the possible flow vectors (in our case,
k ∈ 0 . . . 31) as the latent state variable values. Let flow vector value fk indicates that pixel xti,j in frame
t has moved to location (i + F xk , j + F yk) at time t + 1. To compute the external field, we compare the
neighborhood around source pixel xtij in frame t with all k neighborhoods in frame t+ 1.

fLP (xij , xi′j′) = −(|i′ − i|+ |j′ − j|) (9)

The associated latent pairwise potential is simply the Manhattan distance between the two latent
state values 9. The range of motion is limited to the 32 nearest flow vectors surrounding the target point.

We compare inference time and posterior sample quality for three real-world datasets, captured in
an office environment using a Prosilica GC650c gigabit ethernet color-CMOS camera under uncontrolled
lighting conditions (figures 26, 27, 28). Adjacent frames were taken 10 ms apart.

High-quality flow fields were obtained with as few as 300 gibbs scans per frame, giving a maximum
frame rate of 32 fps. The dynamic ranges encountered in the optical flow calculations resulted in the 6.2

28

engine producing very poor quality results; in this case, dense optical flow is a problem that needs the
8.4 engine.

14 Conclusion

We have shown how virtualization of state and inference elements in a stochastic circuit gives rise to more
resource-efficient circuits for models with homogeneity and large amounts of state. This makes it possible
to perform Bayesian inference on low-level vision problems in real-time with limited silicon resources.

The homogeneity present in the original model for fEF is eliminated by the transformation outlined
in section 9 The parametrized fLP densities of the static circuit could be configured on a site-by-site
basis, again with the configuration information living in the PSC (and thus runtime-reconfigurable).

The overall architecture of virtualizing over a region of the graph, and then selectively enabling parts
of the resulting density calculation, suggests an engine for graphs with a more general topology. Each
tile would be responsible for performing inference on some subregion of the graph, communicating with
its neighbors, via message-passing the sampled state values, and selectively enabling and disabling the
relevant densities.

Currently the engine described performs inference at every latent state site, making some applications
(such as problems of filling-in missing regions (2001)) impossible. It would be easy to add an additional
configuration bit at each site in the Pixel State Controller to selectively enable inference on a per-pixel
basis.

29

(a) Initial frame (b) 64-bit software (c) 12-bit hardware

0 50 100 150 200 250 300
time (sec)

1

0

1

2

3

4

5

6

lo
g
 s

co
re

1e5 Score time series for bookswing.pgr

hardware
software

 0 100 200 300 400 500
time (ms)

1

0

1

2

3

4

5

6

lo
g
 s

co
re

1e5

(d) log score vs time

Figure 26: Optical flow results on the “bookswing” data

30

(a) Initial frame (b) 64-bit software (c) 12-bit hardware

0 50 100 150 200 250 300
time (sec)

1
0
1
2
3
4
5
6
7
8

lo
g
 s

co
re

1e5 Score time series for gc650c.addison.blackcar.209211

hardware
software

 0 100 200 300 400 500
time (ms)

1
0
1
2
3
4
5
6
7
8

lo
g
 s

co
re

1e5

(d) log score vs time

Figure 27: Optical flow results on the “blackcar” data

31

(a) Initial frame (b) 64-bit software (c) 12-bit hardware

0 50 100 150 200 250 300
time (sec)

1

0

1

2

3

4

5

6

lo
g
 s

co
re

1e5 Score time series for walking0.pgr

hardware
software

 0 100 200 300 400 500
time (ms)

1

0

1

2

3

4

5

6

lo
g
 s

co
re

1e5

(d) log score vs time

Figure 28: Optical flow results on the “eric” data

32

Sampled Data

Figure 29: A Gaussian mixture model, illustrating the generative process for mixture model data. There
are three latent classes from which the data are generated, with the first class generating a datapoint
with π1 = 0.5. The total probability of a data point yi is the sum of the source probabilities weighted by
their mixture weights. Samples from the resulting distribution are shown below.

Implementation details for perceptual learning

This section describes the Diricihlet process mixture model, which underpins our perceptual learning
circuit, along with the inference scheme and circuit architecture we have developed. The Dirichlet process
mixture model contains data-dependent conditional independencies that cannot be represented in a single
fixed-structure probabilistic graphical model. It also contains detailed performance data clarifying the
role played by conditional independence and parallelism in driving circuit efficiency.

15 Dirichlet Process Mixture Model

Probabilistically we view the “clustering” problem using a mixture model (2006). Mixture models assume
there are some number of hidden (latent) causes of our data, each cause having some distinct properties.
When we observe the data, we don’t know which cause generated the data. When clustering we assume
each cluster came from its own hidden cause. We will initially describe the model when the number of
hidden causes is known, and then show how we extend it to the unknown case via the Dirichlet process.

The generative process for a mixture model is as follows. Assume there are K possible sources of
data, each source having some associated set of parameters θk. That is, data from source k is distributed
as xi ∼ F (θk), where F (·) is some known parametric distribution.

Each data point xi is generated by first picking one of these sources with probability πk (
∑

k πk = 1)
and then drawing xi ∼ F (θk), where F is often termed the “likelihood”. The {πk} are called mixture
weights. Note that each xi is drawn independently. Figure 29 shows an example of this generative process
for three clusters of data from N(µk, 1) distributions.

This model easily extends to the multidimensional case, where each dimension is an independent

33

“feature”. That is, D-dimensional data vector xi is generated from cluster k such that the likelihood is

P (xi|{θk}) =
D∏
d=1

P (xdi |θdk) (10)

We can imagine there exists a vector c keeping track of the source of xi – if xi is drawn from cluster
k, ci = k. Thus “clustering” a dataset is attempting to compute the cluster assignment vector c.

X ∼ P (X|c, {θk})P (c|{πk}) (11)

15.1 Mixing weight prior

If we don’t know the mixing weights {πk} ahead of time, we can assign them a prior distribution.

P (X|c, {θk})P (c|{πk})P ({πk}) (12)

The derivation below is closely copied from (2011). A natural fit for a prior over the mixing weights
is the symmetric Dirichlet prior with concentration parameter α

K :

p(π1, · · · , πk|α) ∼ Dirichlet(α/K, ..., α/K) =
Γ(α)

Γ(α/K)K

K∏
j=1

π
α/k−1
j (13)

Given a particular assignment vector c, we can integrate over all possible values of {πk} to arrive at

P (c|α) =

∫
∆K

N∏
i=1

P (ci|π)dπ (14)

=

∫
∆K

∏K
k=1 π

mk+αk−1
k

D(α1, ..., αK)
dπ (15)

=
D(m1 + α

K ,m2 + α
K , · · · ,mk + α

K)

D(αK ,
α
K , · · · , αK)

(16)

=

∏K
k=1 Γ(mk + α

K)

Γ(αK)K
Γ(α)

Γ(N + α)
(17)

where we are using the shorthand mk =
∑N

i=1 δ(ci = k) is the number of objects assigned to class k.
Note that in this equation above, individual class assignments are no longer independent, but what

they are is exchangable – the probability of a particular assignment vector is the same as any other
permutation of the assignment vector.

15.2 Dirichlet Process Prior

In all the examples above, we have assumed the number of latent classes, K, is fixed. Through various
derivations outside the scope of this text, we can show that one infinite limit of the above dirichlet prior
is the Dirichlet Process, also known as the Chinese Restaurant Process.

The Chinese Restaurant Process is named for the apparantly-infinite seating capacity of many Chinese
restaurants, and describes a particular algorithm for assigning mixing weights. The stochastic process
defines a distribution of customer seatings at a restaurant with an infinite number of tables (1973)

In the CRP, N customers sit down, with the first customer taking a seat at the first table. The ith
customer chooses a table at random, with

34

1 2 31
2

3

4

5

6

7

8
9

(a) Assignment from the CRP

1 2 31
2

3

4

5

6
78

9

(b) Equally-likely assignment from the
CRP due to exchangability

Figure 30: Two draws from the CRP with equal probability. Note that only the total number of customers
at each table, and not their identity, affects the probability of the distribution. With each table (cluster)
is associated some latent parameter θi.

P (occupied table k|previous customers)
mk

α+ i− 1
(18)

P (next unoccupied table|previous customers)
α

α+ i− 1
(19)

(20)

where mk is the number of customers sitting at table k. A crucial feature of the CRP is that the
resulting distribution of table assignments is exchangable (1996) – the assignment vector is invariant to
any permutation of the labels. This means that the probability of particular table seating arrangement
is the same regardless of the order the customers arrived in. Thus, for customer i, the precise arrival
ordering of customers 1 through i − 1 does not affect p(ci = k), only the total number of customers at
each table does.

For a CRP mixture model, each table k corresponds to a mixture component, and has associated with
it a set of cluster parameters θK .

15.3 Conjugacy

The θk are all often drawn from some base prior, or hyperprior, distribution. That is, the generative
process has an additional step of first drawing K θk values from a prior distribution.

P (X|c, {θk})P ({θk})P (c|{πk}) (21)

If a prior distribution and the likelihood exhibit conjugacy (2006), then the posterior distribution on
the parameter of interest (in this case, the θk) takes the same functional form as the prior. Important
quantities of interest, such as the posterior distribution for p(θk|{yi}), and the posterior predictive distri-
bution p(y∗|{yi}) can then be computed based upon a reduced representation of the data, the summary
statistics.

The Bernoulli distribution p(x = 1|θ) = θx(1 − θ)1−x is the distribution of a biased coin with heads
probability θ. A conjugate prior for θ, the probability that x = 1, is the two-parameter beta distribution,

p(θ|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (22)

If we use the Beta distribution as the prior on Bernoulli(θ), conjugacy results in the posterior after
observing x = 1 as:

p(θ|x = 1, α, β) =
Γ(α+ β + 1)

Γ(α+ 1)Γ(β)
θ1+α−1(1− θ)β−1 (23)

35

Input
Data

Clustered
Data

Cluster
Parameter

Vectors

Figure 31: An example of clustering via a 10-dimensional binary mixture model. The input data is at left
– each row is a data point in the 10-dimensional binary space. The resulting discovered clusters (middle)
are associated with latent “parameter vectors”, one for each cluster, which are estimated from the data.

The observations yi are drawn independently, and as a result, if m are the number of datapoints with
yi = 1 in the dataset and n are the number of datapoints with yi = 0 then we can see that

p(θ|m,n, α, β) =
Γ(α+ β +m+ n)

Γ(α+m)Γ(β + n)
θm+α−1(1− θ)n+β−1 (24)

A more detailed derivation can be found in (2006).

15.4 Gibbs Sampling

Using a conjugate likelihood model with known parameters and the CRP as a prior on class assignments,
we are thus interested in sampling from the posterior distribution on class assignments,

P (c|X) ∝ P (X|c, {θk})P ({θk})P (c|α) (25)

The combination of conjugacy and exchangability allows us to exactly sample from the resulting
conditional distribution on cluster assignments. This lets us Gibbs sample using the scheme from (2000).
We briefly review some of the key terms necessary here.

Let c−i be the assignments of all objects except for the object of current interest, ci. Thus

P (ci = k|c−i,X) ∝ P (X|c)P (ci = k|c−i) (26)

The CRP above readily provides P (ci = k|c−i),

P (ci = occupied classk|c−i) =
mk,−i

α+N − 1
(27)

P (ci = newclass|c−i) =
α

α+N − 1
(28)

(29)

36

Figure 32: The two-parameter Beta distribution, the prior likelihood for the conjugate Beta-Bernoulli
data model

Figure 33: Sequential updates to the Beta-Bernoulli conjugate data model. Starting with no observed
data and a prior distribution (left), additional observations shift the posterior distribution of θ in an
intuitive way. Note on the last row that, even if the prior is wildly biased, sufficient data “overwhelms”
the prior’s effect on the posterior distribution.

37

Via conjugacy above, we can easily compute P (xi|X−i, c). This defines all the terms we need to Gibbs
sample assignments under the Dirichlet process mixture model.

16 Architecture

Here we present a stochastic architecture for efficient data streaming and sampling in the Dirichlet-process
mixture model for binary (Bernoulli-distributed) data and a conjugate Beta distribution prior. There are
two features which make this system stand out from our previous stochastic architectures:

First, the architecture is dynamic – this is the first case where the set of possible random values
changes as inference unfolds. This is in contrast to our simplest proposals for transition circuits and
compiler generated circuits, where every random variable has an equivalent, dedicated stochastic circuit
element, or our lattice Markov Random Field engine, where the set of random values is explictly known
ahead of time, even though some random variables were virtualized.

Second, this is the first example of an architecture where the data is streamed through the core
system. Everything we’ve discussed up to this point has required that all data be present in the circuit,
at once for inference to occur. Here, we relax that assumption, instead streaming a row of data at a time
through the system, thus allowing for far larger datasets, enabling “big-data” style applications.

To better understand the operation of the circuit, we stream in a dataset that looks like the input
data in figure 31 – a dense binary matrix where each row is a binary vector of observations. We perform
nonparametric clustering to group the rows, identifying for each grouping a canonical “parameter vector”.
The circuit learns both the parameter vectors and, importantly, the number of parameter vectors.

16.0.1 Terminology

To that end, we will use HP when referring to the hyperparameters for the data model (for the Beta-
Bernoulli data model, HP = (α, β)), and SS when referring to the sufficient statistics (for the Beta-
Bernoulli model, SS = (m,n)). Note that our model is multidimensional – here we describe the conjugate
likelyhood for a single feature.

The conjugacy of the likelihood means that we only need to store the sufficient statistics for a group,
allowing us to cluster very large amounts of data using relatively few on-device state bits. Sufficient
statistics are stored in constant-time-access SRAM on-device. The finiteness of this RAM means that
we can only cluster datasets with up to KMAX clusters, but this is rarely a problem in practice – while
the Dirichlet process mixture model accommodates a potentially infinite number of latent clusters, most
real-world datasets have far fewer.

Overall operation is as follows – data is streamed in one row at a time. We sample an assignment from
that new row based on previously seen data, by Gibbs sampling all possible latent group assignments.
This sampling, as well as the dynamic creation and destruction of new latent groups, is handled by the
Group Manager. A multi-feature module stores the sufficient statistics for all groups and computes the
P (ci = k|{y−i}, {HPs} necessary for the resulting sampling step. Once a row’s group assignment has
ben sampled, the sufficient statistics for that group are updated, and the group assignment is streamed
out of the circuit.

16.1 Parallelism

Conditional independence allows us to compute cluster assignments in parallel. The multi-feature module
computes the probability that the current row yi was generated by a particular cluster k for all features
in parallel. The resulting scores are simply added via a pipelined adder tree.

38

Group
Manager

Multi-feature
Module

Store suff stats

Compute Post Pred

Accumulate across
features

Multinomial
Sampler

Burst
Groups List

Group
Assignment
Scores

New Group Assignment

ROW n
ROW n+1
ROW n+2
ROW n+3
ROW n+4
ROW n+4
ROW n+5
ROW n+6

Input
Stream

GRP for n
GRP for n+1
GRP for n+2
GRP for n+3
GRP for n+4
GRP for n+4
GRP for n+5
GRP for n+6

Output
Row to Group
Assignment
Stream

Figure 34: Stochastic circuit for inference in a Dirichlet-Process Mixture Model. Input data is streamed
through (upper-left), and a distribution on group assignment is computed for each row by the multi-
feature module. A sample is drawn from that distribution, the row is inserted in that group, and the new
assigned group is streamed out.

Data:

Evaluate:

Reduce:

y0 y1 y2

p(y0 | ss0, hp0) p(y1 | ss1, hp1) p(y2 | ss2, hp2)

yN

p(yN | ssN, hpN)

All features
evaluated

simultaneously

Space-parallel adder
tree performs summation

p(y | ss, hp)

Figure 35: Schematic of feature-parallel evaluation of the cluster assignment probability for a given
feature; all features are evaluated simultaneously, and the results are summed in parallel via an adder
tree.

39

p(y*|SS, HP)

SuffStat
RAM

Hyperparams

Group
Address

DATA[0]

Feature 0

p(y*|SS, HP)

SuffStat
RAM

Hyperparams

DATA[1]

Feature 1

p(y*|SS, HP)

SuffStat
RAM

Hyperparams

DATA[N-2]

Feature N-2

p(y*|SS, HP)

SuffStat
RAM

Hyperparams

DATA[N-1]

Feature N-1

Pipelined Adder Tree

Figure 36: Feature Parallel evaluation architecture: A common group is selected across all features, and
the posterior predictive is computed for each datum using its associated feature. As the features are
independent, and the probabilities are in log2 space, a simple pipelined adder tree is used to accumulate
the total score.

16.2 Component Models

To evaluate the probability of a data point being generated by a particular group, we need to compute
p(y∗|SS,HP). Thus we must store those sufficient statistics someplace stateful. We must also implement
component-model-specific hardware to update those sufficient statistics when a data point is either added
to or removed from a group.

Figure 37 shows the interface for the sufficient-statistics mutation module “SSMutate” and the pos-
terior predictive evaluation module “PredScore”. SSMutate is heavily pipelined (hence the START and
DONE signals) and returns the updated values on NEWSS based on whether the data point is being
added to the group (ADD = 1) or removed from the group (ADD = 0). PredScore takes in the cur-
rent values for the sufficient statistics (SUFFSTATS and the hyperparameters (HYPERS) and returns
logP (y ∗ |SS,HP). It is also heavily pipelined, with one tick per sample throughput.

16.3 Beta Bernoulli Component Model

Having shown above that the posterior predictive p(x = 1|D,HP) for a beta bernoulli component model
is

p(x = 1|{xi}, α, β) =
m+ α

α+ β +m+ n
(30)

to compute the log score we must compute

log p(x = 1|{xi}, α, β) = log(m+ α)− log(α+ β +m+ n) (31)

This requires an internal approximation to the log function, which we do via linear interpolation. The

40

SUFFSTATS

DATUM

START DONE

NEWSS
D

S

S

ADD

SS Mutate

SUFFSTATS HYPERS

DATUM

START DONE

LOGSCORE
D

S H

L

PredScore

Figure 37: Every component model requires the implementation of two modules, a “SSMutate” module
to compute updates to sufficient statistics based on the addition or removal of a datum to a group, and
a “PredScore” module to compute the probability of a datapoint being generated by a particular group.

resulting approximation error is shown in Figure 38, which stays very small even as we vary the sufficient
statistics over a wide range.

16.4 Multi-Feature Module

Figure 35 shows the internal parallel-evaluation process of the multi-feature module. At compilation
time, the specific feature configuration (number of features, feature type, bit-precision) parameterizes
this module. For each element in the data vector yi we compute the posterior predictive p(yi|SSi, HPi)
using the above-described components. A massive pipelined parallel adder tree performs the reduction.
Carefully keeping track of the pipeline stages enables deep pipelining and thus single-cycle evaluation of
a given row belonging to each group.

16.5 Group Manager

The group manager is responsible for tracking which entries in sufficient-statistics RAM are in use, and
enabling the dynamic creation and deletion of groups as the inference process dictates.

Even if the multi-feature module is aggressively pipelined to allow for single-cycle throughput, the
sufficient statistics must be delivered rapidly enough such that the score can be evaluated with no gaps.
Thus, the group manager must be able to burst out a list of all addresses of groups currently in use.

The group manager does this (figure 39) by keeping two stacks: an “available” stack of addresses not
in use, a “used” stack of addresses currently in use, and a look-up table mapping between addresses and
locations in the “used” stack. Thus creating a new group is O(1): pop an address A from the available
stack, push A onto the used stack, and write the current “used” stack pointer at A in the lookup table.
Group deletion is also O(1): to delete group A, look up its location in the used stack via the look-up
table; copy the top entry from the used stack over that address, updating it’s entry in the LUT along the
way. Then push A onto the available stack. Bursting is O(K), as we simply read out the entries in the
used stack.

16.6 Streaming Inference

The streaming interface (Figure 40) to the clustering circuit enables rapid clustering without necessitating
the circuit keep all of the data locally; rather the only state stored on the device are the sufficient statistics.

Data is written in a bit-packed format, and is pipelined – the next row of data can be written while
the circuit is performing inference on a current row. Hyperparameters and other per-feature configuration
information can be written via the feature-control interface.

Inference is controlled by asserting GO with a command word and an input group. The command
word serves as an opcode, enabling particular aspects of the circuit to allow for initialization, inference,
data addition and removal, and prediction.

41

Figure 38: Beta Bernoulli posterior predictive hardware approximation results. The dashed line is the
exact, floating point result, whereas the solid line is the answer generated by the PostPred module. The
results are for P (x = 1|xi), and are shown as we systematically vary the number of observed heads from
1 to 1000, for three values of observed tails.

The specific bits of the command word are shown in table 5. To add a new datapoint and pick the
right group for that datapoint based on the existing data , we set SAMP=1, ADD=1, GROUPSEL=1,
DLATCH=1, NEWG=1. Once DONE is asserted, GRPOUT is the group assignment of this new data-
point. To perform generic inference without adding or removing data, set REM=1, SAMP=1, ADD=1,
GROUPSEL=1, DLATCH=1, and NEWG=1. This will remove the datapoint, perform inference (creat-
ing new groups as necessary), and then assign the datapoint to the resulting group.

17 Results

We validate the resulting circuits through a series of tests assessing the impact of bit precision, including
explicitly comparing the posterior distribution with an exact enumeration, testing behavior with syn-
thetic and incremental data. Runtime performance is compared against theorietical predictions and an
optimized software implementation on commodity hardware.

17.1 Resource Utilization

Table 6 shows the resource utilization for the hardware designs synthesized to measure KL, below. Table 7
shows the resource utilization for the 256 feature circuit used in all other experiments. The internal score
calculation is expressed in our standard m.n fixed point format, and is listed under the “precision” column.
The number of bits used by the Gibbs sampler internally for sampling is Q. Each of these circuits can
handle 1024 possible groupings and a maximum 216 datapoints per group, and runs at 125 MHz.

42

Used IndexAvaialble Used

5
2

4

6

1

3
0

7

0
1
2
3
4
5
6
7

0

1
2

Su� Stats
0
1
2
3
4
5
6
7

(a) Group manager for tracking sufficient statistics. Available is a stack of unused entries in sufficient statistics
RAM; used is a stack of the in-use sufficient statistics ram locations. The “used index” enables lookup from
a sufficient-statistics location to a location in the used stack, enabling O(1) group removal.

Used IndexAvaialble Used

5
2

4

6

1

3
0

7

0
1
2
3
4
5
6
7

0

1
2

Used IndexAvaialble Used

5
2

4

6

1

3
0

7

0
1
2
3
4
5
6
7

0

1
2

3
1

2
1

2

3 3

ADD

GROUP

(b) Creating a new group. 1. the location for the sufficient statistics is determined from the available queue,
which is 2. pushed onto the “used” stack. That stack position is saved in the correct location in the “used
index”.

Used IndexAvaialble Used

5
2

4

6

1

3
0

7

0
1
2
3
4
5
6
7

0

1
2

Used IndexAvaialble Used

5

2
4

6

1

3
0

7

0
1
2
3
4
5
6
7

0

2
1

2

2
3

3

1

4

4
REMOVE

GROUP

(c) Removing a group. To remove a group (in this case, group 5), we first look up its location in the “used”
stack via the used index. We then 2. remove it from the used stack, 3. push it back onto the available stack,
and move the top of the used stack down to the location previously held by 5. This necessitates 4. an update
to the used index.

Figure 39: The group manager, which provides dynamic O(1) creation, O(1) deletion, and O(K) bursting
of group addresses.

43

GO
CMD[6:0]
GRPIN[G-1:0]

DIN[31:0]

DONE
GRPOUT[G-1:0]

DADDR[D-1:0]
DWE

FCONFIGDIN[23:0]
FCONFIGADDR[F-1:0]
FCONFIGWE

Inference
Control

Data
Input

Feature
Control

Clustering Circuit

Figure 40: Interface for the Dirichlet Process Mixture Model Stochastic Circuit. Data is loaded asy-
chronously via the data interface, and feature hyperparameters are set via feature control. Inference is
controlled via a 7-bit command word.

Table 5: Command word bits – see text for examples of common settings

Bits Name Description

0 REM Remove the current data point from the group in-
dicated by GRPIN

1 SAMP Perform a ”sampling” step, that is, determine
which group we should assign this data point to

2 ADD Add this datapoint to a group (generally after
sampling)

4:3 GROUPSEL When we add the group, which group source do
we use, the input (= 0) (GRPIN) or the one you
just sampled (= 1) or the new one we generated
(= 2)

5 DLATCH Latch the data – make the data in the shadow
register set ”live” . Generally this is set to 1.

6 NEWG Attempt to create a new group: this should always
be 1 when sampling, but otherwise can be set to 1
to attempt to assign (force) a datapoint to a new
group

44

Table 6: Resource utilization for 16-feature clustering circuit, maximum 1024 clusters, maximum 216

datapoints per cluster.

Resources

Features Precision Q bits Slice FFs Slice LUTs BRAMS

16 4.2 4 17890 13660 56
16 4.4 4 18354 14929 56
16 4.4 6 18368 14940 56
16 4.4 8 18382 14955 56
16 6.2 4 18188 14041 56
16 6.2 6 18190 14048 56
16 6.4 4 18662 15581 56
16 6.4 6 18667 15465 56
16 6.4 8 18681 15480 56
16 6.4 10 18695 15500 56
16 6.6 8 19170 16946 56
16 6.6 10 19184 16970 56
16 6.6 12 19200 16988 56
16 8.2 6 18498 14327 56
16 8.2 8 18508 14340 56
16 8.4 6 18984 15861 56
16 8.4 8 18989 15762 56
16 8.4 10 19003 15780 56
16 8.4 12 19019 15801 56
16 8.6 8 19478 17215 56
16 8.6 10 19492 17240 56
16 8.6 12 19508 17258 56

Table 7: Resource utilization for 256-feature clustering circuit, maximum 1024 clusters, 216 datapoints
per cluster.

Resources

Features Precision Q bits Slice FFs Slice LUTs BRAMS

256 6.4 6 77332 121128 296
256 6.4 8 77346 121147 296
256 6.4 10 77360 121162 296
256 6.6 8 84548 142893 296
256 6.6 10 84562 142917 296
256 6.6 12 84578 142935 296
256 8.4 8 81982 125040 296
256 8.4 10 81996 125064 296
256 8.4 12 82012 125086 296
256 8.6 8 89197 146778 296
256 8.6 10 89211 146812 296
256 8.6 12 89227 146829 296

45

6.
6,

12

8.
6,

10

8.
6,

8

6.
6,

10

6.
6,

8

8.
6,

12

8.
4,

12

6.
4,

10

8.
4,

10

6.
4,

8

8.
4,

8

6.
4,

6

Bit precision (m.n, q)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
K

L
d
iv

e
rg

e
n
ce

Posterior Sample accuracy

(a) KL for different bit precisions

6.
6,

12
8.

6,
10

8.
6,

8
6.

6,
10

6.
6,

8
8.

6,
12

8.
4,

12
6.

4,
10

8.
4,

10
6.

4,
8

8.
4,

8

6.
4,

6
un

ifo
rm

Bit precision (m.n, q)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

K
L

d
iv

e
rg

e
n
ce

Posterior Sample accuracy

(b) KL for different bit precisions, with comparison to
completely random clustering

Figure 41: Kullback-Liebler divergence between true, explictly enumerated distribution and collection of
posterior samples.

17.2 Explicit posterior samples

The sampling system embodied in our circuit should produce samples from the distribution P (c|xi, HPs).
As we’ve done in previous sections, here we compare the distributions from the sampler and the true
known distribution.

In the case of our Dirichlet process mixture model, the size of the posterior space grows very quickly.
The number of clusters possible in a dataset with n rows follows the Bell Numbers (). Thus explicit
enumeration and scoring of this dataset quickly becomes impracticle in the large data limit. Here we
compare with n = 10.

We randomly generate ten 16-feature datasets, and for each firmware bit precision we evaluate the
KL between the true posterior distribution and the result of 100000 samples, with a sample taken after
every 100 iterations of the core Gibbs steps.

17.3 Basic Inference

17.3.1 Recovering Ground Truth

We create several synthetic datasets with known ground truth, and vary the number of true underlying
groups and the number of rows per group. We initialize the data to a single group, as this requires the
engine to do the most work to break symmetry and find a robust clustering. We set the hyperparameters
to match their ground truth settings – for the Beta prior to be α = 0.1, β = 0.1

To measure the similarity between a found clustering and the ground truth, we use the adjusted
Rand index (ARI, (1971)). ARI ranges from 0 to 1.0, with 1.0 being identical clusterings. For each
group/row configuration, we create ten data sets, and perform inference on them. The results are plotted
in Figure 42.

As we can see from the figure, synthetic datasets with fewer numbers of datapoints per group are in
some sense “harder” to cluster – a stable clustering equivalent to ground truth takes many more sweeps.

17.3.2 Incremental addition of data

The streaming interface enables the incremental addition of data and continual reevaluation of the clus-
tering of existing data. The nonparametric mixture model always places non-zero probability mass on a

46

Figure 42: Recovery of ground truth for all-in-one-group initialization, across various numbers of true
groups in data and rows per group. The adjusted Rand index (see text) measures cluster similiarty – an
ARI of 1.0 means recovered clusters are identical to ground truth.

new datapoint belonging to a new group. To test if our circuit correctly recapitulates this behavior, we
generated a series of 40 datapoints for each of 10 groups, and then added them one row at a time and
observed the resulting clustering. Figure (43 shows the result – the circuit closely tracks the true number
of groups in the data, although expresses uncertainty for each new datapoint.

17.4 Performance vs software

We can directly compare the time necessary to sample a new assignment for a row, given the existing data
and group structure. This is the fundamental operation that the model performs. For the 256-feature
circuit, we create a variety of synthetic datasets and disable the final mutation step, such that the number
of groups remains constant throughout inference. The time taken is the same, however the final write-
enable has been disabled. We compare this Gibbs sampling performance with a custom beta-Bernoulli
DP mixture model implemented by hand in highly optimized C++.

We expect a linear relationship between the time required for a row sample and the number of latent
groups, which we see in Figure 44. By examining the slope, we can compute the marginal time necessary
for a row operation. The circuit takes 7.4 ns per operation, whereas the software implementation takes
15.3 µs on a 2.8GHz Intel Xeon CPU. For large datasets which fully take advantage of the circuits
extensive pipelining, this suggests a two-thousand-fold speed increase – 250x from from parallelism, and
another 8 from dedicated hardware. We can compare the performance of the circuit to the simulated
performance with PCI-E overhead removed (figure 45). The two slopes are in close agreement, however
we can see that the PCI-E overhead adds 4 µs per row.

47

0 50 100 150 200 250 300
data points added

0

2

4

6

8

10

g
ro

u
p
s

Recovery of correct group number with added data

true group count
emperical group count

Figure 43: Adding new datapoints to the engine. Every set of 40 datapoints belongs to a new group (true
group count is in blue). The model correctly estimates the number of latent groups in the data. Jitter
has been added to the y-axis to enable density visualization.

Figure 44: Comparison of performance between the stochastic circuit and a hand-optmized mixture model
performing the same operations on a desktop computer. Here, we measure the time necessary to compute
the group assignment distribution for a single row. The slope of each line is the time necessary to evaluate
the probability of the row being assigned to the particular group.

48

Figure 45: The circuit’s performance in actual hardware, including PCI-E bus and host control overhead,
is very close to the theoretical performance from VHDL simulation of the circuit without complex inferface
hardware.

18 Perceptually-plausible clustering of handwritten digits

For example, humans are good at recognizing handwritten digits, even when they are drawn in a variety
of styles. Here we use a database of handwritten digits to demonstrate perceptual clustering, which
produces human-interpretable results even at low bit-precision.

The MNIST hand-written digit database (1998) consists of size-normalized and centered 20 by 20-
pixel binarized images of hand-written digits. They are often used as a benchmark for supervised learning
methods. The original dataset consists of 60k labeled training images and 10k labeled test images.

We use 20k images from the training set (2000 per digit) and 1000 images from the test dataset (100
per digit). We downsample each 20x20 image to 16x16 and treat them as flat (one-dimensional) binary
vectors.

This encoding throws away much of the spatial information in the image; that is, our model has now
knowledge of pixel locality – feature F33 might be for a pixel at (3, 4) and feature F34 for a pixel at (4, 4),
but the model does not exploit this relationship. As an additional consequence, our performance would
be exactly the same were the pixels randomly permuted.

18.0.1 Clustering

We use both (8.6), 12-bit and (6, 4), 10-bit circuits on the original MNIST dataset. We perform 4 gibbs
scans for each new row added, and can see how, in the presence of more data the circuit finds more
plausible clusters (Figure 46). All hyperparameters were set to 1.0.

We organize the clusters by their “most common true class” in figure 47. The different “styles” of
each digit are readily apparent, as is the perceptual ambiguity of certain styles of digits (8 and 3, for
example).

18.0.2 Prediction

While we’ve spent the entire time discussing clustering in an unsupervised context, when we know ground
truth for each data point, it’s possible to use the system to make supervised predictions. Our streaming

49

0 5000 10000 15000 20000 25000 30000 35000
row

0

10

20

30

40

50

g
ro

u
p
s

Groups found as rows are added

(a) 8.6,12-bit precision

0 5000 10000 15000 20000 25000 30000 35000
row

0

10

20

30

40

50

g
ro

u
p
s

Groups found as rows are added

(b) 6,4,10-bit precision

Figure 46: The number of cluster groups found in the MNIST dataset as we add new digits; the model
continually finds subtypes of clusters in the presence of more and more data.

0
1
2
3
4
5
6
7
8
9

(a) 8.6,12-bit precision

0
1
2
3
4
5
6
7
8
9

(b) 6.4,10-bit precision

Figure 47: The clusters found in 20000 example digits, organized by the most common class present in
that cluster. Various different “styles” of writing each digit are found. Bars at right indicate (green) the
fraction of the cluster made up by the most common digit, (blue) the fraction in the second-most-common
digit, and (red) the remaining digits in the cluster.

50

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e

ROC using binary classification via CRP Mixture Model

digit 0
digit 1
digit 2
digit 3
digit 4
digit 5
digit 6
digit 7
digit 8
digit 9

(a) Low bit precision (6.4, 6)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e

ROC using binary classification via CRP Mixture Model

digit 0
digit 1
digit 2
digit 3
digit 4
digit 5
digit 6
digit 7
digit 8
digit 9

(b) High bit precision (8.6, 12)

Figure 48: ROC curves for posterior predictive-based classification of test digits from the MNIST dataset
for two different circit bit precision. Classification becomes more perfect as the line gets closer to the
upper-left axes.

CRP interface let’s us evaluate the probability of cluster assignment for any new test row. We then
compute in-class vs out-of-class ROC curves for each of 1000 test rows, taking 100 samples per row.

The ROC curves show good performance in this prediction task (figure 48, and highlight the expected
challenges in disambiguating simialr digits (such as 3 and 8).

precision Digits

m n q 0 1 2 3 4 5 6 7 8 9

6 4 6 0.993 0.996 0.985 0.979 0.988 0.976 0.991 0.992 0.974 0.985
6 4 8 0.994 0.996 0.988 0.983 0.984 0.976 0.993 0.993 0.974 0.982
6 4 10 0.995 0.996 0.988 0.972 0.982 0.980 0.993 0.994 0.966 0.984
6 6 8 0.994 0.996 0.987 0.980 0.987 0.973 0.993 0.994 0.972 0.983
6 6 12 0.995 0.995 0.988 0.984 0.989 0.977 0.992 0.994 0.973 0.985
8 4 8 0.994 0.996 0.986 0.977 0.988 0.976 0.993 0.993 0.977 0.986
8 4 10 0.994 0.995 0.990 0.980 0.983 0.974 0.993 0.994 0.972 0.980
8 4 12 0.994 0.996 0.990 0.972 0.988 0.977 0.992 0.995 0.974 0.982
8 6 8 0.994 0.997 0.988 0.984 0.988 0.981 0.994 0.994 0.981 0.987
8 6 10 0.995 0.995 0.989 0.978 0.986 0.976 0.994 0.995 0.972 0.986
8 6 12 0.995 0.997 0.988 0.984 0.983 0.976 0.994 0.994 0.975 0.985

Table 8: Area under the curve for the inclass-outclass ROCs.

19 Future Directions

We have constructed a stochastic circuit with dynamic structure for Dirichlet-process mixture model
clustering, along the way showing substantial performance gains even in spite of fairly extreme arithmetic
functional approximation.

19.1 Architectural Improvements

The circuit presented here can potentially expand to models with thousands of features – the only limit
as currently constructed is the depth of the pipelined adder-tree. We have also seen that conditional

51

independence gives rise to opportunities for parallelism, key to the efficiency advantages enjoyed by this
circuit. Here, the features are conditionally independent, and thus we can score them in parallel with
minimal overhead.

We have not gone as far as possible in exploiting conditional independence in this model: the posterior
predictive P (ci = k|yi) for a given group is conditionally independent of all other groups. This would
allow computation P (ci = k) for all k in parallel as well, giving us an architecture whose parallelism
would scale with the underlying latent conditional independence of the data.

19.2 Model and Inference

While we focus on the Beta-Bernoulli conjugate model class, we can obviously extend the circuits to
other conjugate models, such as the Normal-Inverse-Gamma model for real-valued data, by replacing the
SSMutate and PredScore modules. Heterogeneous collections of features are also possible.

Right now, our inference scheme requires externally setting the hyperparameters. We’ve determined
internally (unpublished) that hyperparameter inference is often the key to extracting best-in-class per-
formance from probabilistic models, and can even accelerate the mixing times of the underlying Markov
chains. It would be reasonable to add additional state-controller logic to implement various forms of
hyperparameter inference, such as slice sampling for both the CRP and per-feature hyperparameters. As
we mentioned above, it would also be possible to incorporate this circuit as part of a larger, more complex
probabilistic model.

52

Automatic Circuit Construction via a Compiler

One stringest test of putative composition and abstraction laws — or primitives and design rules
more generally — is whether they can be exploited to produce useful designs mechanically. This section
describes our approach to doing so. We have built a system that uses our abstraction and composition
laws to effect the automatic transformation (compilation) from a high-level description of a probabilistic
problem, such as a Bayes net, to a synthesizable circuit.

Here we present a compiler for discrete-state factor graphs. At a high level, this compiler takes two
inputs, a factor graph and a list of variables to perform inference on, and generates an optimized circuit
for inference. This compiler is capable of transforming arbitrary-topology discrete-state factor graphs
into synthesizable densely-parallel circuits capable of performing inference at millions of samples per
second. The compiler automatically identifies the conditional independence structure in the model to
exploit opportunities for parallelism.

We then compile three example probabilistic models. First we compile the classic pedagogical “rain”
model, showing how even at ridiculously-low bit precision the resulting circuit closely approximates
the results obtained by exact marginalization. We then turn our attention to the much larger, highly
bimodal undirected Ising model from statistical physics. We compile multiple Ising models, at varying
coupling strengths, and recover the correct qualitative behavior. We then show compilation of a real-
world Bayes network, ALARM, for causal medical diagnosis, and show how we can programmatically
pick at compilation time which subset of the variables are fixed.

20 What can we compile

Our compiler supports arbitrary-topology factor graphs with discrete-valued state variables. The poten-
tials must be representable as conditional probability tables (figure 49). Discrete-state factor graphs were
the first class of probabilistic models supported by Kevin Murphy’s excellent Bayesian Network Toolbox
(2001), and can be applied to a wide range of problem domains.

Discrete-state factor graphs also provide ample opportunity to explore the viability of automatic
parallelization. Our compiler creates a dedicated stochastic circuit element for each random variable,
a choice that allows for maximal parallelization at the expense of consuming greater silicon resources.
Only limited silicon resources constrain the number of random variables (size of the factor graph) we can
support at the moment.

The resulting circuit performs massively-parallel Gibbs sampling (??) on the resulting graph. Gibbs
sampling is viable in discrete-state factor graphs as exact sampling from p(xi|x−i) is easy – simply tabulate
the scores for each possible setting of xi and then exactly sample from the resulting table.

The dynamic nature of the compiler makes targeting a reconfigurable platform like FPGAs a natural
fit, although all of the generated HDL is synthesizable for ASIC targets. Most of the performance numbers
in this section are generated by targeting a Xilinx Virtex-6 LX240T FPGA, unless otherwise indicated.

20.1 Discrete-output CPT-sampling gate

Ultimately, all sampling units for all nodes are compiled down into discrete-output conditional probability
gates, described in section??. Neighboring variables are connected to the input lines of the CPT gate,
and output samples are generated conditioned on these values.

53

f1 f2

c1 c2

f3

e

c1
0
1

f1
0

0.01

c2
0
1

f2
0

0.01

c3
0
1
0
1
0
1
0
1

f1
0

0.01
0.2
0.9
0.2
0.8
0.01
0.99

c2
0
0
1
1
0
0
1
1

c1
0
0
0
0
1
1
1
1

Figure 49: Discrete-state factor graph with factors expressed as conditional probability tables (CPTs).
The total energy of the model is E(x) summing over all factors, and the probability of any particular
state is 1

Z e
−E(x).

Listing 1: Code to express a simple 3-node chain factor graph. Factor is defined in line 1, variables are
created in lines 9-11, and the factors are wired up in lines 13-14

1 def factor(x1, x2):
2 if x1 == x2:
3 return 0
4 else:
5 return 16
6

7 fg = fglib.FactorGraph()
8

9 v1 = fg.add_variable((0, 3))
10 v2 = fg.add_variable((0, 7))
11 v3 = fg.add_variable((0, 3))
12

13 fg.add_factor(factor, [v1, v2])
14 fg.add_factor(factor, [v2, v3])

21 The compiler passes

The compiler begins with a factor graph description in Python, where a simple graph library allows a
user to construct the graph by specifying variables, factors, and their topology. Listing 1 shows the
construction of a simple three-variable two-factor graph. Variables are created in the graph and a handle
is returned for further manipulation; the user specifies the (inclusive) range of possible values for the
variable. Each variable can also be created as “observed”, which causes the compiler to not target this
variable for inference. Observed variables are data – measurements about the world that we wish to
condition on.

Factors are specified as python functions that return an energy (larger values are less likely). Note that
the functions can perform arbitrary computation, as they are only evaluated in the course of compilation,
generating a lookup table for later synthesis.

The compilation steps are as follows. We color the initial factor graph to identify parallelization
opportunities. Nodes of the same color are conditionally independent, and thus we can do inference on
them simultaneously. We then annotate the variables with the number of bits necessary to represent
them, derived from their user-supplied range information.

54

(a) Initial Factor graph (b) Color

2 3 2

(c) Annotate with bit
precision

2 3 2

(d) Convert to SD(K)

232

CYC

CPTG CPTG CPTG

(e) Add Kernels

2 3 2

CYC

CPTGCPTGCPTG

(f) Compile away Densities

(g) FPGA Result

Figure 50: Compilation passes. a.) shows the original factor graph, which we perform graph coloring on
(b.) to identify conditionally-independent random variables that are amenable to simultaneous sampling.
We (c.) convert to an SDK and add the sampling kernels (d.) and then compile away the densities (e.)
leaving a collection of interconnected CPT gates. (f.) shows the visualized netlist in hardware.

55

We then convert the factor graph into a form (2008) which explicitly represents the variables as
states, the factors as densities, and includes the stochastic FSMs doing inference (the kernels). This
“State, Density, Kernel” (SDK) form allows reasoning about the precise flow of inference and kernel
structure. In the SDKs pictured, circles are state variables, squares are densities which score those state
variables, and triangles are the kernels which perform mutation and control other kernels.

Taking the simple SDK from before, we annotate it with the “kernels” that will ultimately be per-
forming inference. The primary kernel used is an “enumerated Gibbs” kernel which will perform Gibbs
sampling of a particular target node. State variables labeled “observed” do not have kernels attached.

A kernel inherits the coloring of its target state variable. Thus all kernels of a given color can be
executed simultaneously. All of the Gibbs kernels are driven by a single master “mixture” kernel at the
root of the SDK. The mixture kernel randomly selects one color of kernel to execute at a time, effectively
implementing “random scan gibbs” as described by (2008).

We then perform a graph transform on the SDK to compile away the densities, and replace the
resulting kernels with CPT gates as follows (the densities are of course the original factors in the factor
graph). For a given target node we:

• Consider all possible state values of the state nodes in the target node’s Markov blanket, and build
up a giant lookup table mapping from the possible input state space to the distributions on the
output state.

• We use this table to create a Conditional Probability Table Gate (as described in section ?? with
its conditioning inputs as the neighboring state variables.

• The resulting CPT Gate is a SDK kernel – it’s a stochastic unit which mutates the value of the
target variable and preserves the total ergodic distribution of the markov chain.

The compiler then simply wires up these CPT gates and connects their enable lines appropriately.

22 Performance

A kernel for a state with k possible values will take k + o cycles to sample a new value, where o is the
overhead associated with handshaking. When we tell all the CPTs for a given graph color to “sample”,
we schedule for worst-case performance. If kMAX is the maximum number of possible values for a state
variable, all kernels are given kMAX + o cycles to complete. In practice, this has limited impact on
performance, for two reasons:

• the airities we’re working with are generally small – 2, 3, 4 possible states

• Since all the nodes for a given color are sampled in parallel, we can only move on when the last of
these is done sampling. Even if the time to sample is E[k/2] + o, it’s likely that at least one kernel
will need the full k + o cycles, stalling the completion of the cycle.

22.1 IO and entropy

We enable programmatic IO with the resulting compiled circuits by chaining all the state variables
together in a single long shift register, akin to JTAG. The shift register is latched to allow inference to
continue to occur during the readout. Compilation metadata is saved post-compilation to allow readout
from python to match the factor graph node labels in the original source code.

Entropy is provided to each kernel via an associated XORshift RNG (see 4) which is given a unique
seed at compile time. Note that this is a dramatically-inefficient use of entropy – we are using roughly
one-thousandth of the entropy provided by each PRNG. it is possible to multiplex the output of the
PRNGs to share them between different subsets of CPT gates and save silicon.

56

C Cloudy

SSprinkler R Rain

W
WetGrass

P(C=F)
0.5

P(C=T)
0.5

P(S=F)
0.5
0.9

P(S=T)
0.5
0.1

C
F
T

P(R=F)
0.8
0.2

P(R=T)
0.2
0.8

C
F
T

P(W=F)
1.0
0.1
0.1
0.01

P(W=T)
0.0
0.9
0.9
0.99

R
F
F
T
T

S
F
T
F
T

Figure 51: “rain” factor graph.

23 Example Models

We present three compiled models. The classic Rain example Bayes network is a careful walk-through
of the possible queries we can make on such a Bayes net, and shows how even at very low bit precision
we recover the correct answers. The Ising model from statistical physics demonstrates massively parallel
execution of a very large model. We conclude with the ALARM causal medical diagnosis network,
highlighting how compilation can enable different subsets of nodes to be “observed”, and thus conditioned
on.

23.1 Rain

We adopt Kevin Murphy’s (2001) modification of the classic “Rain” example from Artificial Intelligence,
A Modern Approach (2009) as our initial model. The Bayesian Network originally presented has four
boolean nodes: cloudy (C), rain (R), sprinker (S), and wet grass (G). When it’s cloudy, it’s more likely
to rain, and you’re less likely to turn on the sprinkler. Both the sprinkler and rain can cause the grass to
be wet. We can trivially convert this Bayes net into a factor graph (figure 51) and describe it efficiently
in Python (listing 2).

We compile the network at three different bit precisions and generate 10,000 samples of the full joint
distribution, P(C, S, W, R), and use those samples to answer queries. We compare our empirical results
with exact results obtained via belief propagation. Based on table 9, we see that even at 5 bits, we
very accurately recover posterior values for queries. Merely 5 bits are enough to accurately encode the
resulting joint distribution and efficiently sample from it.

The queries are as follows (see table 9):

1. P (C) : Probability of cloudy (this probability is explicitly coded in a factor, so this serves as a
sanity check)

2. P (S|W) : Given that the grass is wet, what is the probability the sprinkler was on?

3. P (S|W,R) : Given that the grass is wet and it is raining, what is the probability that the sprinker
is on? Because of the rain, the posterior probability of the sprinkler being on goes down.

57

Listing 2: Source code for rain factor graph, defining the three potentials and wiring up the graph

fg = fglib.FactorGraph()

cloudy = fg.add_variable((0, 1), observed=False)

sprinkler = fg.add_variable((0, 1), observed=False)

rain = fg.add_variable((0, 1), observed=False)

wet_grass = fg.add_variable((0, 1), observed=False)

assignments = {’cloudy’ : cloudy,
’sprinkler’ : sprinkler,
’rain’ : rain,
’wet_grass’ : wet_grass}

def sprinkler_pot(cloud, sp):
if cloud:

if sp: return to_energy(0.1)
return to_energy(0.9)

else:
return to_energy(0.5)

fg.add_factor(sprinkler_pot, [cloudy, sprinkler])

def rain_pot(cloud, ra):
if cloud:

if ra: return to_energy(0.8)
return to_energy(0.2)

else:
if ra: return to_energy(0.2)
return to_energy(0.8)

fg.add_factor(rain_pot, [cloudy, rain])

def grass_pot(sp, ra, wg):
if sp and ra:

if wg: return to_energy(0.99)
return to_energy(0.01)

if sp == 0 and ra == 0:
if wg: return to_energy(0.0001)
return to_energy(0.9999)

else:
if wg: return to_energy(0.9)
return to_energy(0.1)

fg.add_factor(grass_pot, (sprinkler, rain, wet_grass))

Query BP 5-bits 8-bits 12-bits

P (C) 0.5 0.4855 0.5065 0.4983
P (S|W) 0.4298 0.4535 0.4320 0.4309
P (S|W,R) 0.1945 0.2160 0.2045 0.1935

Table 9: Rain Factor Graph. Measured values for various bit-precisions of rain model

58

23.2 Ising Model

The Ising model (1925) is a probabilistic model of ferromagnetism in statistical mechanics, and is
frequently used as a benchmark model for probabilistic methods due to its extremely bimodal nature.
The model consists of binary variables which represent the spins of magnetic domains. Each spin can be
either “up” or “down”, and only interacts with its nearest neighbors.

Adjacent spin variables contribute to the total model energy only when they have different values;
that is, an “up” variable next to a “down” variable is a higher-energy state than two “up” or two “down”
juxtaposed variables. J controls the magnitude of the difference between these two energy states.In
statistical mechanics, higher-energy configurations are less probable – nature seeks out lower-energy
states.

The factors are thus all homogenenous, and of the form

f(x, x′) =

{
0 if x = x′

J if x 6= x′
(32)

The energy of the total ising system is thus

E(X) =
∑

x,x′∈N(x)

f(x, x′) (33)

where x′ ∈ N(x) is the set of all nodes that are adjacent to x.
We compile nine different 256-node Ising factor graphs, systematically varying the coupling strength

J from 0.5 to 1.4. Figure 52 shows both the evolution of the sampler over time, as well as the resulting
histogram of the number of “up” vs “down” states. When the coupling strength is very low, each binary
variable is effectively independent, and as we expect the sum of states histogram looks roughly Gaussian.
As the coupling strength increases, bimodality emerges, with the “all up” and “all down” configurations
being dramatically preferred.

We’re thus able to compile large factor graphs and perform efficient probabilistic inference program-
matically. The programmatic nature of the compiler has the benefit of making it easy to explore different
points in the parameter space.

23.3 ALARM

ALARM (“A Logical Alarm Reduction Mechanism”, (1989)) is a Bayesian network for patient mon-
itoring, encoding the probabilities of a differential diagnosis with 8 possible diaagnoses based on 16
measurements.

Alarm diagnoses are mutually exclusive, but not encoded as such. Measurements are often continuous,
but for the purpose of the network they are encoded categorically, e.g. “low, normal, high”.The network
also makes inferences on 13 intermediate nodes, connecting diagnoses to measurements.

We go from the original Bayes net (figure 54) to a factor-graph representation (figure 55) which we
then compile with 12-bit precision. We compile two different target networks: One with the diagnoses
observed, and one with the measurements observed.

Compilation with the diagnoses observed lets us understand the relationship between diseases and
evidence. As seen in figure 57, a healthy person has the majority of measurements in the “normal”
column, although for some variables (such as Total Peripheral Resistance, TPR), there is a roughly
uniform distribution on measurements. Hypovolemia, pulmonary embolism, and left ventricular failure
create different symptom profiles.

Compilation with the measurements observed allows us to use the network as it might be in a clinical
setting – measurements are made and diagnoses are suggested. When all measurements are in the
“normal” range (figure 58, no diagnosis is suggested. Particular settings of measurements adjust the
probabilities of particular symptoms.

59

J=
0

.5
J=

0
.6

J=
0

.7
J=

0
.8

J=
0

.9
J=

1
.1

J=
1

.2
J=

1
.3

0 2000 4000 6000 8000 10000

samples

J=
1

.4

Figure 52: Samples from 8-bit 256-node Ising circuits with different coupling strengths. As the coupling
strength increases, the distribution becomes more bimodal.

60

(a) J = 0.0 (b) J = 0.6

(c) J = 1.0 (d) J = 1.4

Figure 53: Example samples from the compiled Ising model for four different coupling strengths.

Hypovolemia

LVED
Volume

LV Failure Anaphylaxis
Insufficient
Anesthesia

Pulm.
Embolus Intubation

Kinked
Tube Disconnection

CVP PCWP

History

TPR
CO

Blood
Pressure

Stroke
Volume

Catechol.

Heart
Rate

Error Low
Output Error

Cauter

HR BP
HR
EKG

HR
SAT

PAP Shunt
Vent
alv

Vent
lung

Vent
tube

Vent
machine

SaO2

PA Sat

SaMV
= TV*RR

Min Vol

exp CO2

PresFiO2

Art. CO2

Diagnostic

Measurement

Intermediate

Figure 54: The ALARM (A Logical Alarm Reduction Mechanism) Network, with 8 diagnoses, 16 findings,
and 13 intermediate variables.

61

PAP

VentLung

Disconnect

HR

MinVol

ErrLowOutput

FiO2

LVFailure

CVP

LVEDVolume

KinkedTube

Intubation

BP

ExpCO2

MinVolSet

SaO2

VentTube

ArtCO2

StrokeVolume

PVSat

Press

HRBP

Catechol

VentMach

VentAlv

CO

Shunt

HREKG

Hypovolemia

HRSat

InsuffAnesth

TPR

ErrCauter

HistoryAnaphylaxis

PulmEmbolus

PCWP

Figure 55: The ALARM Factor Graph generated from the Alarm Bayes Network.

62

HR

ErrLowOutput

FiO2

LVFailure

CVP

LVEDVolume

BP

SaO2

ArtCO2

StrokeVolume

PVSat

HRBP

Catechol

VentAlv

CO

HREKG

Hypovolemia

HRSat

InsuffAnesth

TPR

ErrCauter

HistoryAnaphylaxis

PCWP

PAP

VentLung

Disconnect

MinVol

KinkedTube

Intubation

ExpCO2

MinVolSet

VentTube

Press

VentMach

Shunt

PulmEmbolus

Parallel Stages
of Inference

Conditioning
Variables (�xed)

Figure 56: The ALARM factor graph from figure 55 colored for parallel execution.

63

Figure 57: The ALARM Network: Marginal distributions for measured (symptom) variables given par-
ticular diseases.

64

Figure 58: The ALARM Network: Marginal distributions for diagnoses based upon particular settings of
the measured symptoms.

65

24 Future Directions

Causal reasoning is a crucial capability in systems that try and make sense of the noisy data they observe
in the world, and can be modeled as a Bayes net. Here we have shown how a generalization of Bayes nets,
discrete-state factor graphs, can be programmatically complied into stochastic circuits. The compiler
we built takes compact descriptions of factor graphs in python, and generates synthesizable RTL. The
resulting circuits enable rapid inference, allowing for posterior exploration across a wide range of models.

We’ve also shown how having a compiler allows for the automatic exploration of a variety of models
an parameters in the problem space. With the rise of probabilistic programming languages, one can
imagine a day when arbitrary probabilistic programs can be compiled down to efficient circuits.

Right now, the proof-of-concept compiler we’ve built leaves open the option for many performance
optimizations. As our timing is all based on the worst-case time of the slowest sampler in a particular
graph subset, future versions can adopt better handshaking to achieve closer-to-optimal runtime. Right
now we give each stochastic gate its own PRNG, a waste of resources that could easily be ameliorated
by multiplexing the output of the RNGs.

Any of our stochastic gates could be incorporated into the compilation step, as fully blowing out
the CPT table for every state variable tends to be somewhat space-inefficient. More compact special-
purpose gates would enable much larger graphs. Similarly, we could create more runtime-configurable
gates, allowing for greater runtime flexibility in the underlying model. For much larger graphs, the
virtualization strategy used for our stochastic video processor will be nceessary. Future research should
explore architectures and compilation techniques that combine the flexibility of the compiler with the
efficiency of the virtualized units.

66

Spiking Implementations of Stochastic Digital Cir-
cuits

To implement stochastic digital circuits using spiking elements with Poisson firing statistics, we will
leverage two basic identities of the Poisson process:

Proposition 1 Let X1 and X2 be exponentially distributed random variables with rates λ1 and λ2 re-
spectively. Then P (X1 < X2) = λ1

λ1+λ2
.

Proposition 2 Let X1 and X2 be exponentially distributed random variables with rates λ1 and λ2 re-
spectively. Then Z = min(X1, X2) has an exponential distribution with rate λZ = λ1 + λ2.

The proofs are elementary3. Given these identities, if we have a discrete random variable X with K
possible outcomes where Pr[X = k] = λk

Z for k < K, we can simulate from X by running K Poisson
processes and detecting which one spiked first. We can thus implement a DISCRETE-SAMPLE gate by
exponentiating each energy ei to obtain a corresponding unnormalized probability λi and using a bank
of Poisson processes. The crucial observation is that this is the core building block for the space-parallel
implementation of the Gibbs sampling transition circuit we describe earlier.

It is straightforward to make a semi-synchronous spiking network out of these elements. The circuit
we simulate, over binary random variables A, B and C, can be viewed as a factor graph with the following
potentials:

F_A = {(0): 2,
(1): 1}

F_AB = {(0, 0): 1,
(0, 1): 2,
(1, 0): 1,
(1, 1): 1}

F_AC = F_AB

This results in spiking neurons A0 and A1 for variable A, B0 and B1 for variable B, and C0 and C1 for
variable C. We simulate the network semi-synchronously, in accord with the dynamic discipline we rely
on for stochastic transition circuits: local simulation is done asynchronously, with fast lateral inhibition
between X0 and X1, but A0 and A1 are suppressed while B and C are updating, and vice versa. We
leave a treatment of fully asynchronous networks and clocking schemes to future work.

3See http://www.columbia.edu/ ks20/stochastic-I/stochastic-I-PP.pdf for a typical presentation

67

1. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nature

neuroscience 5, 598–604 (2002).

2. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427,

244–247 (2004).

3. Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychological

Science 17, 767–773 (2006).

4. Blaisdell, A. P., Sawa, K., Leising, K. J. & Waldmann, M. R. Causal reasoning in rats. Science

311, 1020–1022 (2006).

5. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: Statis-

tics, structure, and abstraction. science 331, 1279–1285 (2011).

6. Ferrucci, D. et al. Building watson: An overview of the deepqa project. AI magazine 31,

59–79 (2010).

7. Thrun, S. Probabilistic robotics. Communications of the ACM 45, 52–57 (2002).

8. Thrun, S., Burgard, W., Fox, D. et al. Probabilistic robotics, vol. 1 (MIT press Cambridge,

2005).

9. Shotton, J. et al. Real-time human pose recognition in parts from single depth images. Com-

munications of the ACM 56, 116–124 (2013).

28

10. Eckert Jr, J. P., Weiner, J. R., Welsh, H. F. & Mitchell, H. F. The univac system. In Papers and

discussions presented at the Dec. 10-12, 1951, joint AIEE-IRE computer conference: Review

of electronic digital computers, 6–16 (ACM, 1951).

11. Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D. & Alvisi, L. Modeling the effect

of technology trends on the soft error rate of combinational logic. In Dependable Systems

and Networks, 2002. DSN 2002. Proceedings. International Conference on, 389–398 (IEEE,

2002).

12. Rosenmund, C., Clements, J. & Westbrook, G. Nonuniform probability of glutamate release

at a hippocampal synapse. Science 262, 754–757 (1993).

13. Neumann, J. v. The computer and the brain (1958).

14. Akgul, B. E., Chakrapani, L. N., Korkmaz, P. & Palem, K. V. Probabilistic cmos technology:

A survey and future directions. In Very Large Scale Integration, 2006 IFIP International

Conference on, 1–6 (IEEE, 2006).

15. Gaines, B. Stochastic computing systems. Advances in information systems science 2, 37–172

(1969).

16. Mead, C. Neuromorphic electronic systems. Proceedings of the IEEE 78, 1629–1636 (1990).

17. Choudhary, S. et al. Silicon neurons that compute. In Artificial Neural Networks and Machine

Learning–ICANN 2012, 121–128 (Springer, 2012).

29

18. Ackerman, N. L., Freer, C. E. & Roy, D. M. On the computability of conditional probability.

ArXiv e-prints (2010). 1005.3014.

19. Mansinghka, V. K. Natively probabilistic computation. Ph.D. thesis, Massachusetts Institute

of Technology (2009).

20. Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonowitz, K. & Tenenbaum, J. B. Church:

a langauge for generative models. In Uncertainty in Artificial Intelligence (2008).

21. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. In Proceedings of the Interna-

tional Conference on Artificial Intelligence and Statistics, vol. 5.

22. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

(Morgan Kaufmann Publishers, San Francisco, 1988).

23. Lin, M., Lebedev, I. & Wawrzynek, J. High-throughput bayesian computing machine with

reconfigurable hardware. In Proceedings of the 18th annual ACM/SIGDA international sym-

posium on Field programmable gate arrays, 73–82 (ACM, 2010).

24. Vigoda, B. W. Continuous-time analog circuits for statistical signal processing. Ph.D. thesis,

Massachusetts Institute of Technology (2003).

25. Shannon, C. E. A symbolic analysis of relay and switching circuits. Ph.D. thesis, Mas-

sachusetts Institute of Technology (1940).

26. Mansinghka, V. & Jonas, E. Supplementary material on stochastic digital circuits (2014). URL

http://probcomp.csail.mit.edu/VMEJ-circuits-supplement.pdf.

30

1005.3014
http://probcomp.csail.mit.edu/VMEJ-circuits-supplement.pdf
Julian
Highlight
Remove?

27. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation

of state calculations by fast computing machines. The journal of chemical physics 21, 1087

(1953).

28. Geman, S. & Geman, D. Stochastic relaxation, gibbs distributions, and the bayesian restoration

of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on 721–741 (1984).

29. Andrieu, C., De Freitas, N., Doucet, A. & Jordan, M. I. An introduction to mcmc for machine

learning. Machine learning 50, 5–43 (2003).

30. Ward Jr, S. A. & Halstead, R. H. Computation Structures. (The MIT press, 1990).

31. Marsaglia, G. Xorshift rngs. Journal of Statistical Software 8, 1–6 (2003).

32. Wang, F. & Agrawal, V. D. Soft error rate determination for nanometer cmos vlsi logic. In

40th Southwest Symposium on Systems Theory, 324–328 (2008).

33. Marr, D. & Poggio, T. Cooperative computation of stereo disparity. Science 194, 283–287

(1976).

34. Szeliski, R. et al. A comparative study of energy minimization methods for markov random

fields with smoothness-based priors. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on 30, 1068–1080 (2008).

35. Ferguson, T. S. A bayesian analysis of some nonparametric problems. The annals of statistics

209–230 (1973).

31

36. Rasmussen, C. E. The infinite gaussian mixture model. Advances in neural information

processing systems 12, 2 (2000).

37. Anderson, J. R. & Matessa, M. A rational analysis of categorization. In Proc. of 7th Interna-

tional Machine Learning Conference, 76–84 (1990).

38. Griffiths, T. L., Sanborn, A. N., Canini, K. R. & Navarro, D. J. Categorization as nonpara-

metric bayesian density estimation. The probabilistic mind: Prospects for Bayesian cognitive

science 303–328 (2008).

39. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311,

205–208 (2006).

40. Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. Factor graphs and the sum-product algorithm.

Information Theory, IEEE Transactions on 47, 498–519 (2001).

41. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception and learning:

from behavior to neural representations. Trends in cognitive sciences 14, 119–130 (2010).

42. Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks

of an optimal internal model of the environment. Science 331, 83–87 (2011).

43. Pouget, A., Beck, J., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns.

Nature Neuroscience 16, 1170–1178 (2013).

44. Diaconis, P. The markov chain monte carlo revolution. Bulletin of the American Mathematical

Society 46, 179–205 (2009).

32

45. Dagum, P. & Luby, M. An optimal approximation algorithm for bayesian inference. Artificial

Intelligence 93, 1–27 (1997).

46. Weaver, C., Emer, J., Mukherjee, S. & Reinhardt, S. Techniques to reduce the soft error rate

of a high-performance microprocessor. In Computer Architecture, 2004. Proceedings. 31st

Annual International Symposium on, 264–275 (2004).

47. Shepard, K. L. & Narayanan, V. Noise in deep submicron digital design. In Proceedings

of the 1996 IEEE/ACM international conference on Computer-aided design, 524–531 (IEEE

Computer Society, 1997).

48. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators.

Nature 403, 335–338 (2000).

49. Barroso, L. A. & Holzle, U. The case for energy-proportional computing. Computer 40, 33–37

(2007).

50. Flinn, J. & Satyanarayanan, M. Energy-aware adaptation for mobile applications. ACM

SIGOPS Operating Systems Review 33, 48–63 (1999).

51. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proceedings of the

National Academy of Sciences 94, 814–819 (1997).

52. LeCun, Y. & Cortes, C. The mnist database of handwritten digits (1998).

33

	1402.4914
	VMEJ-circuits-supplement
	Iteration and composition
	Discrete Gibbs Sampling
	Metropolis-Hastings
	Functional approximations within
	Exponentiation
	Random Starts to remove bias
	Resources

	Entropy Sources
	The effects of bit precision
	Resource Utilization
	Low-level Vision Factor Graph
	Resource virtualization and parallelization
	Virtualization
	Parallelization

	Circuit Architecture
	Gibbs Tile
	Pixel State Controller
	External Field Density RAM
	Gibbs Core
	Latent Pairwise densities for specific models
	Configuration Parameters
	Tile Efficiency

	Comparison to explicit compilation
	Stochastic Video Processor
	Resources and Speed

	Depth estimation for Stereo Vision
	Dense Optical Flow for Motion Estimation
	Conclusion
	Dirichlet Process Mixture Model
	Mixing weight prior
	Dirichlet Process Prior
	Conjugacy
	Gibbs Sampling

	Architecture
	Terminology
	Parallelism
	Component Models
	Beta Bernoulli Component Model
	Multi-Feature Module
	Group Manager
	Streaming Inference

	Results
	Resource Utilization
	Explicit posterior samples
	Basic Inference
	Recovering Ground Truth
	Incremental addition of data

	Performance vs software

	Perceptually-plausible clustering of handwritten digits
	Clustering
	Prediction

	Future Directions
	Architectural Improvements
	Model and Inference

	What can we compile
	Discrete-output CPT-sampling gate

	The compiler passes
	Performance
	IO and entropy

	Example Models
	Rain
	Ising Model
	ALARM

	Future Directions

	Blank Page

